2024年4月1日发(作者:石家庄数学试卷图片)
个性化教学辅导教案
学生姓名
上课时间
年 级
总 课 时
学 科
课 次
教师姓名
课 题 整式的化简求值
1. 掌握整式求值的方法;
教学目标
2. 掌握含括号整式的化简求值;
3. 掌握含非负数整式的化简求值;
教学过程
教师活动
——进门测 评分_____
1.★★(2017•桂林二模)若﹣x
3
y
a
与x
b
y是同类项,则a+b的值为( )
A.5 B.4 C.3 D.2
【考点】34:同类项.
【分析】依据同类项的定义可得到a、b的值,然后再代入计算即可.
【解答】解:依据同类项的定义可知a=1,b=3,
∴a+b=4.
故选:B.
【点评】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.
2.★★(2016秋•巫溪县期末)下列各组代数式中,是同类项的是( )
A.﹣3p
2
与2p
3
B.2xy与2ab C.a
3
b
2
与a
2
b
3
D.﹣5mn与10mn
【考点】同类项.
【分析】本题是对同类项定义的考查,同类项的定义是所含有的字母相同,并且相同字
母的指数也相同的项叫同类项,所以只要判断所含有的字母是否相同,相同字母的指数
是否相同即可.
【解答】解:A,不是,因为字母不同且字母的指数不同;
百度文库花文定制教案
1
B,不是,因为字母不同;
C,不是,因为字母的指数不相同;
D,是,因为字母相同且字母的指数也相同.
故选D.
【点评】判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相
同字母的指数是否相同.
3.★★(2016秋•江都区期末)下列运算正确的是( )
A.﹣a
2
b+2a
2
b=a
2
b B.2a﹣a=2
C.3a
2
+2a
2
=5a
4
D.2a+b=2ab
【考点】合并同类项.
【专题】计算题.
【分析】根据合并同类项的法则,合并时系数相加减,字母与字母的指数不变.
【解答】解:A、正确;
B、2a﹣a=a;
C、3a
2
+2a
2
=5a
2
;
D、不能进一步计算.
故选:A.
【点评】此题考查了同类项定义中的两个“相同”:
(1)所含字母相同;
(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.
还考查了合并同类项的法则,注意准确应用.
4.★★★(2016秋•大祥区校级期中)化简
(1)﹣3x+2y﹣5x﹣7y; (2)2a﹣3b+6a+9b﹣8a+12b
(3)2a﹣3b+(a﹣b) (4)﹣(2a﹣1)+2(a﹣1);
(5)2(2x﹣3y)﹣3(4x﹣5y); (6)﹣7x﹣[9x
2
+3x﹣(6x﹣1)+5];
(7)3a
2
b﹣[﹣3a
2
c﹣3ab
2
﹣3a
2
c+3a
2
b].
【考点】合并同类项.
【分析】根据合并同类项的法则即可求出答案.
【解答】解:(1)原式=-8x-5y
(2)原式=(2+6﹣8)a+(﹣3+9+12)b=18b;
百度文库花文定制教案
2
更多推荐
同类项,字母,定义
发布评论