2024年3月21日发(作者:浙江初中数学试卷初二上册)
公众号:有一点数学
最值系列之瓜豆原理
在辅助圆问题中,我们了解了求关于动点最值问题的方式之一——求出动点轨迹,即可求出
关于动点的最值.
本文继续讨论另一类动点引发的最值问题,在此类题目中,题目或许先描述的是动点P,但
最终问题问的可以是另一点Q,当然P、Q之间存在某种联系,从P点出发探讨Q点运动
轨迹并求出最值,为常规思路.
一、轨迹之圆篇
引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.
考虑:当点P在圆O上运动时,Q点轨迹是?
A
Q
P
O
【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?
考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径
MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.
P
Q
A
O
M
【小结】确定Q点轨迹圆即确定其圆心与半径,
由A、Q、P始终共线可得:A、M、O三点共线,
由Q为AP中点可得:AM=1/2AO.
Q点轨迹相当于是P点轨迹成比例缩放.
根据动点之间的相对位置关系分析圆心的相对位置关系;
根据动点之间的数量关系分析轨迹圆半径数量关系.
1
公众号:有一点数学
引例2:如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.
考虑:当点P在圆O上运动时,Q点轨迹是?
Q
A
P
O
点轨迹都是圆.接下来确定圆心与半径.
考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;
【分析】Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P
考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.
即可确定圆M位置,任意时刻均有△APO≌△AQM.
M
Q
P
A
O
引例3:如图,△APQ是直角三角形,∠PAQ=90°且AP=2AQ,当P在圆O运动时,Q点轨
迹是?
Q
P
AO
【分析】考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;
考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.
即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.
2
更多推荐
轨迹,动点,最值,分析,问题
发布评论