2023年12月2日发(作者:王朝霞数学试卷2)
【试卷】新人教版七年级下册数学试卷全集春季期七年级数学第九章复习测试题一、填空题(每空2分,共28分)1、不等式的负整数解是2、若_______;不等式解集是,则取值范围是3、一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答,一道题得-1分,在这次竞赛中,小明获得优秀(90或90分以上),则小明至少答对了道题。4、不等式组的解集是。5、如图数轴上表示的是一不等式组的解集,这个不等式组的整数解是6、若代数式1-x-22的值不大于1+3x3的值,那么x的取值范围是_______________________。7、若不等式组无解,则m的取值范围是.8、已知三角形三边长分别为3、(1-2a)、8,则a的取值范围是____________。9、若,则点在第象限。10、已知点M(1-a,a+2)在第二象限,则a的取值范围是_______________。11、在方程组的取值范围是____________________12、某书城开展学生优惠售书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算。某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34元钱。则该学生第二次购书实际付款元。12、阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x表示他的速度(单位:米/分),则x的取值范围为。二、选择题(每小题3分,共30分)1、若∣-a∣=-a则有(A)a≥0(B)a≤0(C)a≥-1(D)-1≤a≤02、不等式组的最小整数解是()A.-1 B.0 C.2 D.33、不等式组的解集在数轴上的表示正确的是()ABCD4、在ABC中,AB=14,BC=2x,AC=3x,则x的取值范围是()A、x>2.8B、2.8<x<14C、x<14D、7<x<145、下列不等式组中,无解的是()(B)(C)(D)6、如果0(A)x<1x7、在平面直角坐标系中,点(-1,3m2+1)一定在()A.第一象限.B.第二象限.C.第三象限.D.第四象限8、如图2,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()9、设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“△”这样的物体,按质量从小到大的顺序排列为()A、○□△B、○△□C、□○△D、△□○10、某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至少可打()A.6折B.7折C.8折D.9折三、解答题(1~2共10分,3~4共12分,5~6共20分)1、解不等式组2、求不等式组的整数解3、已知方程组,为何值时,>?4、乘某城市的一种出租车起步价是10元(即行驶路程在5km以内都需付车费10元),达到或超过5km后,每增加1km加价1.2元(不足1km部分按1km计)。现在某人乘这种出租车从甲地到乙地,支付车费17.2元,试问从甲地到乙地的路程最多是多少?5、某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品50件.生产一件A产品需要甲种原料9千克,乙种原料3千克,可获利润700元;生产一件B产品,需要甲种原料4千克,乙种原料10千克,可获利润1200元.(1)设生产x件A种产品,写出其题意x应满足的不等式组;(2)由题意有哪几种按要求安排A、B两种产品的生产件数的生产方案?请您帮助设计出来。6、足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分。一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了1场,得17分。请问:(1)前8场比赛中,这支球队共胜了多少场?(2)这支球队打满14场比赛,最高能得多少分?(3)通过对比赛情况的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期的目标.请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期目标?第七章平面直角坐标系基础训练题一、填空题1、原点O的坐标是,x轴上的点的坐标的特点是,y轴上的点的坐标的特点是;点M(a,0)在轴上。2、点A(﹣1,2)关于轴的对称点坐标是;点A关于原点的对称点的坐标是。点A关于x轴对称的点的坐标为3、已知点M与点N关于轴对称,则。4、已知点P与点Q关于轴对称,则。5、点P到x轴的距离是2,到y轴的距离是3,则P点的坐标是。6、线段CD是由线段AB平移得到的。点A(–1,4)的对应点为C(4,7),则点B(–4,–1)的对应点D的坐标为______________。7、在平面直角坐标系内,把点P(-5,-2)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是。8、将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x,-1),则xy=___________。9、已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为。10、A(–3,–2)、B(2,–2)、C(–2,1)、D(3,1)是坐标平面内的四个点,则线段AB与CD的关系是_________________。11、在平面直角坐标系内,有一条直线PQ平行于y轴,已知直线PQ上有两个点,坐标分别为(-a,-2)和(3,6),则。12、点A在x轴上,位于原点左侧,距离坐标原点7个单位长度,则此点的坐标为;13、在Y轴上且到点A(0,-3)的线段长度是4的点B的坐标为___________________。14、在坐标系内,点P(2,-2)和点Q(2,4)之间的距离等于个单位长度。线段PQ的中点的坐标是________________。15、已知P点坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是_________________________________________________。16、已知点A(-3+a,2a+9)在第二象限的角平分线上,则a的值是____________。17、已知点P(x,-y)在第一、三象限的角平分线上,由x与y的关系是_____________。18、若点B(a,b)在第三象限,则点C(-a+1,3b-5)在第____________象限。19、如果点M(x+3,2x-4)在第四象限内,那么x的取值范围是______________。20、已知点P在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P。点K在第三象限,且横坐标与纵坐标的积为8,写出两个符合条件的点。21、已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是________________。22、已知,则点(,)在。二、选择题1、在平面直角坐标系中,点一定在()A、第一象限B、第二象限C、第三象限D、第四象限2、如果点A(a.b)在第三象限,则点B(-a+1,3b-5)关于原点的对称点是()A第一象限B第二象限C第三象限D第四象限3、点P(a,b)在第二象限,则点Q(a-1,b+1)在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限4、若,且点M(a,b)在第二象限,则点M的坐标是()A、(5,4)B、(-5,4)C、(-5,-4)D、(5,-4)6、△DEF(三角形)是由△ABC平移得到的,点A(-1,-4)的对应点为D(1,-1),则点B(1,1)的对应点E、点C(-1,4)的对应点F的坐标分别为()A、(2,2),(3,4)B、(3,4),(1,7)C、(-2,2),(1,7)D、(3,4),(2,-2)7、过A(4,-2)和B(-2,-2)两点的直线一定()A.垂直于x轴B.与Y轴相交但不平于x轴B.平行于x轴D.与x轴、y轴平行8、已知点A在轴上方,轴的左边,则点A到轴、轴的距离分别为()A、B、C、D、9、如图3所示的象棋盘上,若位于点(1,-2)上,位于点(3,-2)上,则位于点()A(-1,1)B(-1,2)C(-2,1)D(-2,2)10、一个长方形在平面直角坐标系中三个顶点的坐标为(–1,–1)、(–1,2)、(3,–1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)11、若x轴上的点P到y轴的距离为3,则点P的坐标为()A.(3,0)B.(3,0)或(–3,0)C.(0,3)D.(0,3)或(0,–3)12、在直角坐标系内顺次连结下列各点,不能得到正方形的是()A、(-2,2)(2,2)(2,-2)(-2,-2)(-2,2);B、(0,0)(2,0)(2,2)(0,2)(0,0);C、(0,0)(0,2)(2,-2)(-2,0)(0,0);D、(-1,-1)(-1,1)(1,1)(1,-1)(-1,-1)。13、已知三角形的三个顶点坐标分别是(-1,4),(1,1),(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A、(-2,2),(3,4),(1,7);B、(-2,2),(4,3),(1,7);C、(2,2),(3,4),(1,7);D、(2,-2),(3,3),(1,7)14、在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A.向右平移了3个单位B.向左平移了3个单位C.向上平移了3个单位D.向下平移了3个单位14、若点P(,)在第二象限,则下列关系正确的是()ABCD三、解答题1、在图所示的平面直角坐标系中表示下面各点:A(0,3);B(1,-3);C(3,-5);D(-3,-5);E(3,5);F(5,7);G(5,0)(1)A点到原点O的距离是。(2)将点C向轴的负方向平移6个单位,它与点重合。(3)连接CE,则直线CE与轴是什么关系?(4)点F分别到、轴的距离是多少?2、如图所示的直角坐标系中,三角形ABC的顶点坐标分别是A(0,0),B(6,0),C(5,5)。(1)求三角形ABC的面积;(2)如果将三角形ABC向上平移1个单位长度,得三角形A1B1C1,再向右平移2个单位长度,得到三角形A2B2C2。试求出A2、B2、C2的坐标;(3)三角形A2B2C2与三角形ABC的大小、形状有什么关系。3、如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3。(1)观察每次变换前后的三角形的变化规律,若将△OA3B3变换成△OA4B4,则A4的坐标是____,B4的坐标是____。(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OAnBn,比较每次变换中三角形顶点坐标有何变化,找出规律,推测An的坐标是_____,Bn的坐标是_____。4、在平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来:(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);(2)(-9,3),(-9,0),(-3,0),(-3,3);(3)(3.5,9),(2,7),(3,7),(4,7),(5,7),(3.5,9);(4)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);(5)(2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。观察所得的图形,您觉得它象什么?第八章二元一次方程组复习练习题一、填空题1、关于X的方程,当__________时,是一元一次方程;当___________时,它是二元一次方程。2、已知,用表示的式子是___________;用表示的式子是___________。当时___________;写出它的2组正整数解______________。3、若方程2x+y=是二元一次方程,则mn=。4、已知与有相同的解,则=__,=。5、已知,那么的值是。6、如果那么_______。7、若(x—y)2+|5x—7y-2|=0,则x=________,y=__________。8、已知y=kx+b,如果x=4时,y=15;x=7时,y=24,则k=;b=.9、已知是方程的一个解,则。10、二元一次方程4x+y=20的正整数解是______________________。11、从1分、2分、5分的硬币中取出5分钱,共同__________种不同的取法(不论顺序)。12、方程组的解是_____________________。13、如果二元一次方程组的解是,那么a+b=_________。14、方程组的解是15、已知6x-3y=16,并且5x+3y=6,则4x-3y的值为。16、若是关于、的方程的一个解,且,则=。17、已知等腰三角形一腰上的中线将它的周长分为63和36两部分,则它的腰长是_________。底边长为___________。18、已知点A(-y-15,-15-2x),点B(3x,9y)关于原点对称,则x的值是______,y的值是_________。二、选择题。1、在方程组、、、、、中,是二元一次方程组的有()A、2个B、3个C、4个D、5个2、二元一次方程组的解是()A.B.C.D.3、三个二元一次方程2x+5y—6=0,3x—2y—9=0,y=kx—9有公共解的条件是k=()A.4B.3C.2D.14、如图长方形的面积为A.400cm2 B.500cm2C.600cm2 D.675cm25、一杯可乐售价1.8元,商家为了促销,顾客每买一杯可乐获一张奖券,每三张奖券可兑换一杯可乐,则每张奖券相当于()(A)0.6元(B)0.5元(C)0.45元(D)0.3元6、已知是方程组的解,则、间的关系是()A、B、C、D、7、为保护生态环境,陕西省某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米。设改变后耕地面积x平方千米,林地地面积y平方千米,根据题意,列出如下四个方程组,其中正确的是()ABCD8、设A、B两镇相距千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为千米/小时、千米/小时,①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米。求、、。根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是()A、B、C、D、三、解答题。1、在y=中,当时y的值是,时y的值是,时y的值是,求的值,并求时y的值。2、有三把楼梯,分别是五步梯、七步梯、九步梯,每攀沿一步阶梯上升的高度是一致的。每把楼梯的扶杆长(即梯长)、顶档宽、底档宽如图所示,并把横档与扶杆榫合处称作联结点(如点A)。通过计算,补充填写下表:楼梯种类 两扶杆总长(米) 横档总长(米) 联结点数(个) 五步梯 4 2.0 10 七步梯 九步梯 一把楼梯的成本由材料费和加工费组成,假定加工费以每个个联结点1元计算,而材料费中扶杆的单价与横档的单价不相等(材料损耗及其它因素忽略不计)。现已知一把五步梯、七步梯的成本分别是26元、36元,试求出一把九步梯的成本。3、解下列方程组(1)⑵4、甲,乙联赛中,某足球队按足协的计分规则与本队奖励方案如下表.胜一场 平一场 负一场 积分 3 1 0 奖金(元/人) 1500 700 0 当比赛进行到第12轮结束时,该队负3场,共积19分.问:(1)该队胜,平各几场?(2)若每赛一场,每名参赛队员均得出场费500元,试求该队每名队员在12轮比赛结束后总收入。参考答案如下:解:(1)七步梯、九步梯的扶杆长分别是5米、6米;横档总长分别是3.5米、3.5米(各1分);联结点个数分别是14个、18个.(2)设扶杆单价为x元/米,横档单价为y元/米。依题意得:即,解得。故九步梯的成本为6×3+5.4×2+1×18=46.8(元)(9/).答:一把九步梯的成本为46.8元。第八章二元一次方程组复习测试题一、填空题(每空2分,共34分)1、如果是一个二元一次方程,那么数.b=______。2、已知方程,写出用表示的式子得___________________。当时,_______。3、已知,则x与y之间的关系式为__________________。4、方程的正整数解是______________。5、已知方程组,不解方程组则x+y=__________。6、若二元一次方程组和同解,则可通过解方程组_________求得这个解。7、已知点A(3x-6,4y+15),点B(5y,x)关于x轴对称,则x+y的值是________。8、若,则=,=。9、已知二元一次方程组的解为,则。10、已知等腰三角形一腰上的中线将它的周长分为6和9两部分,则它的底边长是_________。11、已知是方程组的解,则12、在△ABC中,∠A-∠C=25°,∠B-∠A=10°,则∠B=________。13、有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为,十位数字为,则用代数式表示原两位数为,根据题意得方程组。二、选择题(每小题3分,共24分)1、已知都满足方程y=kx-b,则k、b的值分别为()A.一5,—7B.—5,—5C.5,3D.5,72、若方程组的解满足>0,则的取值范围是()A、<-1B、<1C、>-1D、>13、下列六个方程组中,是二元一次方程组的有()①②③④⑤⑥A.1个B.2个C.3个D.4个4、如右上图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x、y,那么下面可以求出这两个角的度数的方程组是()A、B、C、D、5、今年甲的年龄是乙的年龄的3倍,6年后甲的年龄就是乙的年龄的2倍,则甲今年的年龄是()A、15岁B、16岁C、17岁D、18岁6、当时,代数式的值为6,那么当时的值为()A、6B、-4C、5D、17、下列各组数中①②③④是方程的解的有()A.1个B.2个C.3个D.4个8、若实数满足(x+y+2)的解①代入法:②加减法:2、已知y=x2+px+q,当x=1时,y的值为2;当x=-2时,y的值为2。求x=-3时y的值。3、甲、乙两人共同解方程组,由于甲看错了方程①中的,得到方程组的解为;乙看错了方程②中的,得到方程组的解为。试计算的值.4、如图,宽为50cm的长方形图案由10个相同的长方形拼成6、某纸品加工厂为了制作甲、乙两种无盖的长方体小盒(如图),利用边角料裁出正方形和长方形两种硬纸片,长方形的宽与正方形的边长相等。规格150张正方形硬纸片和300张长方形硬纸片全部用于制作这两种小盒,可以做成甲、乙两种小盒各多少个?参考答案:解:设可以制作甲种小盒x个,乙种小盒y个。根据题意,列方程组,得x+2y=1504x+3y=300x=30y=60第八章列二元一次方程组解应用题专项训练1、37岁了。”请问老师、学生今年多大年龄了呢??2、44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少?7,面积是56cm2,4cm,求该梯形的上底和下底的长度是多少?4、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元1)1240元,求两班各有多少名学生?2)(3)?5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。1)初一年级人数是多少?原计划租用45座汽车多少辆?2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?、25元,两人间每人每天35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?、4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生。1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定?请说明理由。8、190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制成盒身,多少张铁皮制成盒底,可以正好制成一批完整的盒子?、一条船顺水行驶36千米和逆水行驶24千米的时间都是3小时,已知1000米,现有一列火车从桥上通过,测得火车从开始上桥到车身过完桥共用1分钟,整列火车完全在桥上的时间为40秒,求火车的速度及火车的长度。11、180平方千米,耕地面积是林地面积的25%,求改变后林地面积和耕地各为多少平方千米?、25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?13、140吨,准备加工后上市销售,该公司的加工能力是:每天精加工6吨或者粗加工16吨,现计划用15天完成加工任务,该公司应安排几天粗加工,几天精加工,才能按期完成任务?如果每吨蔬菜粗加工后的利润为1000元,精加工后为2000元,那么该公司出售这些加工后的蔬菜共可获利多少元?14、12支球队参加选拔,每一队都要与另外的球队比赛一次,记分规则为胜一场记3分,平一场记1分,负一场记0分。比赛结束时,某球队所胜场数是所负的场数的2倍,共得20分,问这支球队胜、负各几场?16、2000元各1000元,一年后全部取出,扣除利息所得税可得利息43.92,已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:公民应交利息所得税=利息金额20%)。17、?100元,因市场变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价和比原单价和提高2%,求甲、乙两种商品的原单价各是多少元?18、70%销售)和九折(按售价的90%销售),共付款386元,这两种商品原售价之和为500元,问这两种商品的原销售价分别为多少元?、﹪﹪22、某工厂去年的利润(总产值——总支出)为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,问去年的总产值、总支出各是多少万元?小红家去年结余5000元,估计今年可结余9500元,并且今年收入比去年高15%,支出比去年低10%,求去年的收入和支出各是多少?23、某校2004年秋季初一年级和高一年级招生总数为500人,计划2005年秋季期初一年级招生数增加20%;高一年级招生数增加15%,这样2005年秋季初一、高一年级招生总数比2004年将增加18%,求2005年秋季初一年级、高一年级的计划招生数是多少?24、在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车量情况下如下:甲同学说:“二环路车流量为每小时1000辆”;2000辆”;3倍与四环路车流量的差是二环路车流量的2倍”。26、根据下图给出的信息,求每件T恤衫和每瓶矿泉水的价格。27、某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?28、“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完.请你帮助商场计算一下如何购买.2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的购买数量不少于6部且不多于8部,请你求出商场每种型号手机的购买数量.修建润扬大桥,途经镇江某地,需搬迁一批农户,为了节约土地资源和保护环境,政府决定统一规划建房小区,并且投资一部分资金用于小区建设和补偿到政府规划小区建房的搬迁农户.建房小区除建房占地外,其余部分政府每平方米投资100元进行小区建设;搬迁农户在建房小区建房,每户占地100平方米,政府每户补偿4万元,此项政策,吸引了搬迁农户到政府规划小区建房,这时建房占地面积占政府规划小区总面积的20%.政府又鼓励非搬迁户到规划小区建房,每户建房占地120平方米,但每户需向政府交纳土地使用费2.8万元,这样又有20户非搬迁户申请加入.此项政策,政府不但可以收取土地使用费,同时还可以增加小区建房占地面积,从而减少小区建设的投资费用.若这20户非搬迁户到政府规划小区建房后,此时建房占地面积占政府规划规划小区总面积的40%.(1可得方程组解得(2)在20户非搬迁户加入建房前,请测算政府共需投资__________万元;在20户非搬迁户加入建房后,请测算政府将收取的土地使用费投入后,还需投资__________万元.(3)设非搬迁户申请加入建房并被政府批准的有z户,政府将收取的土地使用费投入后,还需投资p万元.①用含z的代数式表示p;②当p不高于140万元,而又使建房占地面积不超过规划小区总面积的35%时,那么政府可以批准多少户非搬迁户加入建房?29、某山区有23名中、小学生因贫困失学需要捐助.资助一名中学生的学习费用需要a元,一名小学生的学习费用需要b元.某校学生积极捐助,初中各年级学生捐款数额与用其恰好捐助贫困中学生和小学生人数的部分情况如下表:年级 捐款数额(元) 捐助贫困中学生人数(名)捐助贫困小学生人数(名) 初一年级 4000 2 4 初二年级 4200 3 3 初三年级 7400 (1)求a、b的值;(2)初三年级学生的捐款解决了其余贫困中小学生的学习费用,请将初三学生年级学生可捐助的贫困中、小学生人数直接填入表中.(不需写出计算过程)30、某玩具工厂广告称:“本厂工人工作时间:每天工作8小时,每月工作25天;待遇:熟练工人按计件付工资,多劳多得,计件工资不少于800元,每月另加福利工资100元,按月结算;……”该厂只生产两种玩具:小狗和小汽车。熟练工人晓云元月份领工资900多元,她记录了如下表的一些数据:小狗件数(单位:个) 小汽车个数(单位:个) 总时间(单位:分) 总工资(单位:元) 1 135 2.15 2 2 70 4.30 3 2 85 5.05 元月份作小狗和小汽车的数目没有限制,从二月分开始,厂方从销售方面考虑逐月调整为:k月份每个工人每月生产的小狗的个数不少于生产的小汽车的个数的k倍(k=2,3,4,……,12),假设晓云的工作效率不变,且服从工厂的安排,请运用所学数学知识说明厂家广告是否有欺诈行为?参考答案:12.解:21.解:设甲服装的成本是x元,乙服装的成本是y元,依题意得。解得x=300,y=200答:甲、乙两件服装的成本分别为300元、200元解得100(1+15%)=115(万元),50(1+10%)=55(万元).答:A,B两个超市今年“五一节”期间的销售额分别为115万元,27.解:(1)解法一:设书包的单价为元,则随身听的单价为元根据题意,得
解这个方程,得答:该同学看中的随身听单价为360元,书包单价为92元。
解法二:设书包的单价为x元,随身听的单价为y元根据题意,得
解这个方程组,得答:该同学看中的随身听单价为360元,书包单价为92元。
(2)在超市A购买随身听与书包各一件需花费现金:(元)因为,所以可以选择超市A购买。
在超市B可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计共花费现金:(元)因为,所以也可以选择在超市B购买。 ……4分因为,所以在超市A购买更省钱。 ……5分30.解:设制作一个小狗用时间t1分钟,可得工资x元,制作一辆小汽车用时间t2分钟,可得工资y元。依题意得解得:就二月份来讲,设二月份生产汽车玩具a件,则生产小狗2a件,此时可得工资:M=又因为工人每月工作8×25×60=12000分钟,所以二月份可生产玩具汽车20a+15×2a=12000解得a=240件。故二月份可领工资796元,小于计件工资的最低额,所以说厂家的广告有欺诈行为。七年级下数学第九章复习训练题一、填空题1、已知a>b用”>”或”<”连接下列各式;(1)a-3----b-3,(2)2a-----2b,(3)-------(4)4a-3----4b-3(5)a-b---02、不等式3(x-2)<x-1的非负整数解是3、不等式组的整数解是_______________________4、已知不等式5(x-2)+8<6(x-1)+7的最小整数解是方程2x-ax=4的解,则a的值是____________________。5、如果关于x的不等式(a-1)x6、已知点M(-35-P,3+P)是第三象限的点,则P的取值范围是。7、若点M关于轴的对称点M′在第二象限,则的取值范围是____。8、若关于x、y的方程组的解满足x+y>0,则m的取值范围是____。9、代数式的值不大于的值,那么的正整数解是。10、小颖家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费1.8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小颖家每月用水量至少是_______________。二、选择题1、不等式组的最小整数解是()A.0 B.1 C.2 D.-12、若点P(a,4-a)是第二象限的点,则a必满足()A.a<4B.0<a<4C.a<0D.a>43、在数轴上表示不等式组的解,其中正确的是()4、某原料供应商对购买原料的顾客实行如下优惠办法:⑴一次购买不超过1万元,不予优惠;⑵一次购买超过1万元,但不超过3万元,给九折优惠;⑶一次购买超过3万元,其中3万元九折优惠,超过3万元的部分八折优惠.某厂在该供应商处第一次购买原料付款7800元,第二次购买付款26100元,如果他是一次购买同样数量的原料,可少付金额为()A.1460元B.1540元C.1560元D.2000元5、已知三角形的三边分别为2、、4那么的取值范围是()A、B、C、D、6、若,那么下列式子中正确的是( )A、 B、 C、 D、7、设A、B、C表示三种不同的物体,现用天平称了两次,情况如图所示,那么“A”、“B”、“C”这三种物体按质量从大到小的顺序排应为ABC(B)CAB(C)BAC(D)BCA8、()A B C D9、如图,天平右边托盘里的每个砝码的质量都是1千克,则图中显示物体质量的范围是()A大于2千克B小于3千克C大于2千克且小于3千克D大于2千克或小于3千克10、若方程的解是负数,则的取值范围是()A.B.C.D.11、不等式的解集为,则的值为()A.4B.2C.D.三、解答题1、解不等式组2、求不等式组的整数解。3、若方程组的解满足x<1且y>1,求k的整数解。4、某童装加工企业今年五月份工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%。为了提高工人的劳动积极性,按时完成外贸订货任务,企业计划从六月份起进行工资改革。改革后每位工人的工资分二部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元。(1)为了保证所有工人的每月工资收入不低于市有关部门规范的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元(精确到分)?(2)根据经营情况,企业决定每加工1套童装奖励5元。工人小张争取六月份工资不少于1200元,问小张在六月份应至少加工多少套童装?5、阅读下列材料:十六大提出全面建设小康社会,国际上常用恩格尔系数n来衡量一个国家和地区人民生活水平的状况,它的计算公式为:n=各类家庭的恩格尔系数如下表所示:家庭类型 贫困 温饱 小康 富裕 最富 n n>60% 50%某校初三学生对某乡的农民家庭进行抽样调查,从1997年至2002年间,该乡每户家庭消费支出总额每年平均增加500元,其中食品消费支出总额每年平均增加200元,1997年该乡农民家庭平均刚达到温饱水平,已知该年每户家庭消费支出总额平均为8000元。(1)1997年该乡平均每户家庭食品消费支出总额为多少元?(2)设从1997年起m年后该乡平均每户的恩格尔系数为nm(m为正整数),请用m的代数式表示该乡平均每户当年的恩格尔系数nm,并利用这个公式计算2003年该乡平均每户的恩格尔系数(百分号前保留整数)。(3)按这样的发展,该乡将于哪年开始进入小康家庭生活?该乡农民能否实现十六大提出的2020年我国全面进入小康社会的目标?6、、仔细观察下图,认真阅读对话:根据对话的内容,试求出饼干和牛奶的标价各是多少元?春季期七年级数学第九章列不等式解应用题专项训练1、某化工厂现有甲种原料290千克,乙种原料212千克,计划利用这两种原料生产A、B两种产品共80件,生产一件A产品需要甲种原料5千克,乙种原料1.5千克,生产成本是120元;生产一件B产品需要甲种原料2.5千克,乙种原料3.5千克,生产成本是200元。(1)该化工厂现有原料能否保证生产?若能的话,有几种生产方案?请设计出来。(2)试分析你设计的哪种生产方案总造价最低?最低造价是多少?2、为了保护环境,某企业决定购买10台污水处理设备,现有A、B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如下表:? A型 B型 价格(万元/台) 12 10 处理污水量(吨/月) 240 200 年消耗费(万元/台) 1 1经预算,该企业购买设备的资金不高于105万元。(1)请你设计该企业有几种购买方案;(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案;(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费)3、我市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房.如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?4、某园林的门票每张10,一次使用。考虑到人们的不同需求,也为了吸收更多的少游客,该园林除保留原有的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年)。年票分A、B、C三类:A类年票每张120元,持票者是入该园林时,无需再购买门票;B类门票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类门票每张40元,持票者进入该园林时,需再购买门票,每次3元。(1)如果您只选择一种购买门票的方式,并且您计划在一年中花80元在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式。(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算。5、小王家里要装修,他去商店买灯,商店里有100瓦的白炽灯和40瓦的节能灯,它们的单价分别为2元和32元。经了解知这两种灯的照明效果和使用寿命都一样。已知小王家所在地的电价为每度0.5元。请问当这两灯的使用寿命超过多长时间时,小王选择节能灯才合算?[用电量(度)=功率(千瓦)×时间(时)。6、现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元。(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试定出用车厢节数x表示总费用y的公式。(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?7、为了增加农民收入,村委会成立了蘑菇产销联合公司,小明家是公司成员之一,他家五月份收获干蘑菇42.5kg,干香菇35.5kg。按公司收购要求,需将两种蘑菇包装成简装和精装两种型号的盒式装蘑菇共60盒卖给公司。设包装简装型的盒数为x盒,两种型号的盒装蘑菇可获得的总利润为y(元)。包装要求及每盒获得的利润见下表:品种及利润型号型 装入干蘑菇重量(kg)
装入干香菇重量(kg)每盒利润(元) 简装型(每盒) 0.9 0.3 14 精装型(每盒) 0.4 1 24 写出用含x的代数式表示y的式子。(2)为满足公司的收购要求,问有哪几种包装方案可供选择?8、某城市平均每天产生垃圾700吨,由甲、乙两个垃圾处理厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时可处理垃圾45吨,需费用490元。(1)甲、乙两厂同时处理该城市的垃圾,每天需要几小时完成?(2)如果规定该城市每天用于处理垃圾的费用不得超过7370元,甲厂每天处理垃圾至少需要多少小时?9、我市某商场A型冰箱的售价是2190元,每日耗电量为1千瓦.时,最近商场又进回一批B型冰箱,其售价比A型冰箱高出10%,但每日耗电量却为0.55千瓦,为了减少库存,商场决定对A型冰箱降价销售,请解答下列问题:(1)已知A型冰箱的进价为1700元,商场为保证利润率不低于3%,试确定A型冰箱的降价范围。(2)如果只考虑价格与耗电量,那么些商场将A型冰箱的售价至少打几折时,消费者购买A型冰箱合算?(两种冰箱的使用期均为10年,每年365天,每千瓦.时电费按0.4元计算)10、某城市为开发旅游景点,需要对古运河重新设计,加以改造,现需要A、B两种花砖共50万块,全部由某砖瓦厂完成此项任务。该厂现有甲种原料180万千克,乙种原料145万千克,已知生产1万块A砖,用甲种原料4.5万千克,乙种原料1.5万千克,造价1.2万元;生产1万块B砖,用甲种原料2万千克,乙种原料5万千克,造价1.8万元。(1)利用现有原料,该厂能否按要求完成任务?若能,按A、B两种花砖的生产块数,有哪几种生产方案?请你设计出来(以万块为单位且取整数);(2)试分析你设计的哪种生产方案总造价最低?最低造价是多少?11、修筑高速公路经过某村,需搬迁一批农户,为了节约土地资源和保持环境,政府统一规划搬迁建房区域,规划要求区域内绿色环境占地面积不得高于区域总面积的20%,若搬迁农民建房每户占地150m2,则绿色环境面积还占总面积的40%;政府又鼓励其他有积蓄的农户到规划区域建房,这样又有20户加入建房,若仍以每户占地150m2计算,则这时绿色环境面积只占总面积的15%,为了符合规划要求,又需要退出部分农户。问:(1)最初需搬迁的农户有多少户?政府规划的建房区域总面积是多少?(2)为了保证绿色环境占地面积不少于区域总面积的20%,至少需要退出农户几户?12、某次篮球联赛的常规赛中,雄狮队与猛虎队要争夺一个季后赛的出线权,雄狮队目前的战绩是18胜12负,后面还要比赛6场(其中包括再与猛虎队比赛一场);猛虎队目前16胜15负,后面还要比赛5场。为确保出线,雄狮队在后面的比赛中至少要胜多少场?如果猛虎队在后面的比赛中3胜(包括胜雄狮队1场)2负,那么雄狮队在后面的比赛中至少要胜几场才能确保出线?春季期七年级数学第九章复习测试题一、填空题(每空2分,共28分)1、不等式的负整数解是2、若_______;不等式解集是,则取值范围是3、一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答,一道题得-1分,在这次竞赛中,小明获得优秀(90或90分以上),则小明至少答对了道题。4、不等式组的解集是。5、如图数轴上表示的是一不等式组的解集,这个不等式组的整数解是6、若代数式1-的值不大于的值,那么x的取值范围是_______________________。7、若不等式组无解,则m的取值范围是.8、已知三角形三边长分别为3、(1-2a)、8,则a的取值范围是____________。9、若,则点在第象限。10、已知点M(1-a,a+2)在第二象限,则a的取值范围是_______________。11、在方程组的取值范围是____________________12、某书城开展学生优惠售书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算。某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34元钱。则该学生第二次购书实际付款的最小整数解是()A.-1 B.0 C.2 D.33、不等式组的解集在数轴上的表示正确的是()ABCD4、在ABC中,AB=14,BC=2x,AC=3x,则x的取值范围是()A、x>2.8B、2.8<x<14C、x<14D、7<x<145、下列不等式组中,无解的是()(B)(C)(D)6、如果0(A)x<7、在平面直角坐标系中,点(-1,3m2+1)一定在()A.第一象限.B.第二象限.C.第三象限.D.第四象限8、如图2,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()9、设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“△”这样的物体,按质量从小到大的顺序排列为()A、○□△B、○△□C、□○△D、△□○10、某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至少可打()A.6折B.7折C.8折D.9折三、解答题(1~2共10分,3~4共12分,5~6共20分)1、解不等式组的整数解3、已知方程组,为何值时,>?4、乘某城市的一种出租车起步价是10元(即行驶路程在5km以内都需付车费10元),达到或超过5km后,每增加1km加价1.2元(不足1km部分按1km计)。现在某人乘这种出租车从甲地到乙地,支付车费17.2元,试问从甲地到乙地的路程最多是多少?5、某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品50件.生产一件A产品需要甲种原料9千克,乙种原料3千克,可获利润700元;生产一件B产品,需要甲种原料4千克,乙种原料10千克,可获利润1200元.(1)设生产x件A种产品,写出其题意x应满足的不等式组;(2)由题意有哪几种按要求安排A、B两种产品的生产件数的生产方案?请您帮助设计出来。6、足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分。一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了1场,得17分。请问:(1)前8场比赛中,这支球队共胜了多少场?(2)这支球队打满14场比赛,最高能得多少分?(3)通过对比赛情况的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期的目标.请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期目标?春季期七年级期考模拟试题一|、填空题1、用正三角形和正方形能够铺满地面,每个顶点周围有______个正三角形和_____个正方形。2、某种商品的价格标签已经看不清,售货员只知道此种商品的进价为800元,商场为了促销打七折售出,但要保证利润率不低于5%,请你来帮助售货员重新填好价格标签至少应写___________元。3、在括号内写出下列数轴上表示的不等式的解集:(可用x作为末知数)4、如图,在ΔABC中,填加一个条件:____________,就可判定DF∥AB.填加一个条件:____________,就可判定F∥BC.5、写出二元一次方程2x+3y=20的所有的正整数解是________________。6、已知点A(x,4-y),点B(1-y,2x)关于y轴对称,则yx的值是________?。7、如果点M在第四象限内,那么的取值范围是__________________。8、在△ABC中,∠A=3∠B,∠A-∠C=30°,则此三角形的三个内角分别是_______。9、已知2x-3y=1,用含x的代数式表示y,则y=10、一个多边形的内角和为1620°,则它的边数是边。11、是的平方根;的平方根是________12、一幅美丽的图像,在某个顶点处由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三角形、正四边形、正六边形,那么另外一个为。13、若代数式的值不小于,则的取值范围是14、3、如图④,AB∥CD,∠BAE=120o,∠DCE=30o,则∠AEC=度。二、选择题如果a>b,那么下列结论正确的是( )A、ac2>bc2 B、 3-a<4-bC、a-3>b-2D、2、如图1,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于()A.95°B.120°C.135°D.无法确定3、如图,将一副三角板叠放在一起,使直角的顶点重合于点O,则∠AOB+∠DOC的值()A小于180°或等于180°B等于180°C大于180°D大于180°或等于180°4、某商场五一期间举行优惠销售活动,采取“满一百元送二十元,并且连环赠送”的酬宾方式,即顾客每消费满100元(100元可以是现金,也可以是购物券,或二者合计)就送20元购物券,满200元就送40元购物券,依次类推,现有一位顾客第一次就用了16000元购物,并用所得购物券继续购物,那么他购回的商品大约相当于它们原价的()A.90%B.85%C.80%D.75%5、下列说法中错误的个数是()(1)过一点有且只有一条直线与已知直线平行。(2)过一点有且只有一条直线与已知直线垂直。(3)在同一平面内,两条直线的位置关系只有相交、平行两种。(4)不相交的两条直线叫做平行线。(5)有公共顶点且有一条公共边的两个角互为邻补角。A.1个B.2个C.3个D.4个6、已知点M(3a-9,1-a)在第三象限,且它的坐标都是整数,则a=()A.1B.2C.3D.O7、一个正方形在平面直角坐标系中三个顶点的坐标为(-2,-3),(-2,1),(2,1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(2,-3)D、(2,3)8、三角形的三边的长度分别是3cm,xcm和7cm,则x的取值范围是()A.B.4x<10D.9、不等式的解为,则的取值范围是()A、B、C、D、10、某班举办了一次集邮展览,展出的邮票若每人3张,则多24张,若每人4张,则少26张,这个班共展出邮票张数是:A、174B、178C、168D、16411、下列等式中,错误的是()A、B、C、D、三、解答题1、用计算器探索:①_________;②__________;③_____________;由此猜想:。2、如图所示,请填写下列证明中的推理依据.证明:∵∠A=∠C(已知),∴AB∥CD(___________________)∴∠ABO=∠CDO(_________________________)又∵DF平分∠CDO,BE平分∠ABO(已知)∴∠1=∠CDO,∠2=∠ABO(_________________________)∴∠1=∠2,∴DF∥BE(_____________________________________________)3、解方程组4、解不等式组等式组5、计算:--|+2|+6、已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°求:(1),求∠DAE的度数。(2)试写出∠DAE与∠C-∠B有何关系?(不必证明)7、根据所给信息,分别求出每只小猫和小狗的价格。买一共要70元;买一共要50元。8、一个零件的形状如图,按规定∠A=90o,∠C=25o,∠B=25o,检验已量得∠BDC=150o,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。CDAB9、某校准备从甲、乙两家公司中选择一家公司,为毕业班学生制作一批纪念册,甲公司提出:收设计费与加工费共1500元,另外每册收取材料费5元:乙公司提出:每册收取材料费与加工费共8元,不收设计费.设制作纪念册的册数为x,甲公司的收费(元),乙公司的收费(元)。(1)请你写出用制作纪念册的册数x表示甲公司的收费(元)的关系式;(2)请你写出用制作纪念册的册数x表示乙公司的收费(元)的关系式;(3)如果你去甲、乙两公司订做纪念册,你认为选择哪家公司价格优惠?请写出分析理由.春季期七年级数学期考复习练习(一)选择题1、在同一平面内,两条直线可能的位置关系是()A.平行B.相交C.平行或相交D.平行、相交或垂直2、图中三角形的个数是()A.8B.9C.10D.113、在下列条件中:A+∠B=∠C,A∶∠B∶∠C=1∶2∶3,A=90°-B,A=∠B=∠C中,能确定ABC是直角三角形的条件有()A1个B2个C3个D4个4、不等式组的解集在数轴上的表示是()形卡5、已知点(,)在第三象限,则整数的值可以取()A、1 B、2 C、3D、46、如果只用正三角形作平面镶嵌(要求镶嵌的正三角形的边与另一正三角形有边重合),则在它的每一个顶点周围的正三角形的个数为()A.3B.4C.5D.67、某超市推出如下优惠方案:⑴购物款不超过200元不享受优惠;⑵购物款超过200元但不超过600元一律享受九折优惠;⑶购物款超过600元一律享受八折优惠。小明的妈妈两次购物分别付款168元、423元。如果小明的妈妈在超市一次性购买与上两次价值相同的商品,则小明的妈妈应付款()元。A、522.80B、560.40C、510.40D、472.808、已知点P1(-4,3)和P2(-4,-3),则P1和P2()A.关于x轴对称B.关于y轴对称C.关于原点对称D.不存在对称关系9、已知点P位于轴右侧,距轴3个单位长度,位于轴上方,距离轴4个单位长度,则点P坐标是()A.(-3,4) B.(3,4) C.(-4,3) D.(4,3)10、已知线段a、b、c,有a>b>c,则组成三角形必须满足的条件是()A.a+b>cB.b+c>aC.c+a>bD.a-b>c11、的平方根是()(A)(B)(C)(D)1612、如图,下面推理中,正确的是()A、∵∠A+∠D=180°,∴AD∥BCB、∵∠C+∠D=180°,∴AB∥CDC、∵∠A+∠D=180°,∴AB∥CDD、∵∠A+∠C=180°,∴AB∥CD13、、下列各数中,无理数的个数有()A、1B、2C、3D、414、若0<<、、、这四个数中()A、最大,最小B、最大,最小C、最大,最小D、最大,最小。二、填空题1、一个正多边形,它的一个外角等于与它相邻的内角的,则这个多边形是边形2、已知△ABC为等腰三角形,当它的两个边长分别为8cm和3cm时,它的周长为_____________。3、已知点P与点Q关于轴对称,则a+b=__________。4、若方程组的解x、y都是正数,则m的取值范围是________________。5、如图ABC中,AD是BC上的中线,BE是ABD中AD边上的中线,若ABC的面积是24,则ABE的面积是________。6、不等式组的所有整数解是。7、如图,将一副三角板叠放在一起,使直角的顶点重合O,则∠AOC+∠DOB=____________并2、解方程组把它的解集在数轴上表示出来。3、如图,已知DF∥AC,∠C=∠D,你能否判断CE∥BD?试说明你的理由4、某手机生产厂家根据其产品在市场上的销售情况,决定对原来以每部2000元出售的一款彩屏手机进行调价,并按新单价的八折优惠出售,结果每部手机仍可获得实际销售价的20%的利润(利润=销售价—成本价).已知该款手机每部成本价是原销售单价的60%.(1)求调整后这款彩屏手机的新单价是每部多少元?让利后的实际销售价是每部多少元?(2)为使今年按新单价让利销售的利润不低于20万元,今年至少应销售这款彩屏手机多少部?5、如图,△ABC中,D在BC的延长线上,过D作DE⊥AB于E,交AC于F.已知∠A=30°,∠FCD=80°,求∠D。6、为了保护生态平衡,绿化环境,国家大力鼓励“退耕还林、还草”,其补偿政策如表(一);丹江口库区某农户积极响应我市为配合国家“南水北调”工程提出的“一江春水送北京”的号召,承包了一片山坡地种树种草,所得到国家的补偿如表(二)。问该农户种树、种草各多少亩?表(一)种树、种草每亩每年补粮补钱情况表:表(二)该农户收到乡政府下发的种树种草亩数及年补偿通知单:种树、种草 补粮 补钱 30亩 4000千克 5500元 种树 种草 补粮 150千克 100千克 补钱 200元 150元 春季期七年级数学期考复习练习(三)填空题1、点B在y轴上,位于原点上方,距离坐标原点4单位长度,则此点的坐标为;2、若一个数的算术平方根是8,则这个数的立方根是;第4题图3、如图,BE平分∠ABD,CF平分∠ACD,BE、CF交于G,若∠BDC=140°,∠BGC=110°,则∠A=。4、如图,∠1=_____.5、如图7,是一块四边形钢板缺了一个角,根据图中所标出的测量结果得所缺损的∠A的度数为_________.6、一个正数x的平方根是2a3与5a,则a是_________。7、若x+2y+3z=10,4x+3y+2z=15,则x+y+z的值是_____________。8、如果25x2=36,那么x的值是______________。9、已知AD是ABC的边BC上的中线,AB=15cm,AC=10cm,则ABD的周长比ABD的周长大_____________。10、如果三角形的一个外角等于与它相邻的内角的2倍,等于与它不相邻的一个内角的4倍,则此三角形各内角的度数是_________________________。11、已知一个多边形的内角和与外角和共2160°,则这个多边形的边数是_____________。12、将点A先向下平移3个单位,再向右平移2个单位后,则得到点B(2,5),则点A的坐标为。13、已知一个多边形的每一个外角都相等,且内角和是外角和的2倍,则它的每个外角等于。14、某商场在促销期间规定:商场内所有商品按标价的80%出售,同时,当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券.(奖券购物不再享受优惠)消费金额x的范围(元) 200≤x<400 400≤x<500 500≤x<700 … 获得奖券的金额(元) 30 60100 … 根据上述促销方法,顾客在该商场购物可获得双重优惠,如果胡老师在该商场购标价450元的商品,他获得的优惠额为_________元.15、某车间有98名工人,平均每人每天可加工机轴15根或轴承12个,每根机轴要配2个轴承。应分配x人加工机轴,y人加工轴承,才能使每天加工的机轴和轴承配套,根据题意可得方程组______________________.16、是实数,且,则二、选择题1、平面直角坐标系内,点A(,)一定不在(C)A、第一象限B、第二象限C、第三象限D、第四象限2、现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排()A、4辆B、5辆C、6辆D、7辆3、一种浓度是15%的溶液30千克,现要用浓度更高的同种溶液50千克和它混合,使混合后的浓度大于20%,而小于35%,则所用溶液浓度x的取值范围是()(A)15%4、下列命题中正确的是()(A)有限小数是有理数;(B)无限小数是无理数;(C)数轴上的点与有理数一一对应;(D)数轴上的点与实数一一对应.5、如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯的角∠A是120°,第二次拐弯的角∠B是150°,第三次拐弯的角是∠C,这时道路恰好和第一次拐弯之前的道路平行,则∠C是()ABCD6、线段CD是由线段AB平移得到的。点A(–1,4)的对应点为C(4,7),则点B(–4,–1)的对应点D的坐标为()A.(2,9)B.(5,3)C.(1,2)D.(–9,–4)7、用三块正多边形的木板铺地,拼在一起并相交于一点的各边完全吻合,其中两块木板的边数都是8,则第三块木板的边数应是()(A)4. (B)5. (C)6. (D)8.8、一个三角形的两边分别是4和9,而第三边的长为奇数,则第三边的长是()A、3或5或7B、9或11或13C、5或7或9D、7或9或119、已知点P位于轴右侧,距轴3个单位长度,位于轴上方,距离轴4个单位长度,则点P坐标是()A、(-3,4);B、(3,4);C、(-4,3);D、(4,3)10、不等式组的解集在数轴上的表示是()11、12、不等式4(x2)>2(3x+5)的非负整数解的个数为()A.0个B.1个C.2个D.3个12、下列各图形中,具有稳定性的是()A.B.C.D.13、如图2,已知∠B=∠C,则∠ADC与∠AEB的大小关系是()A、∠ADC>∠AEBB、∠ADC<∠AEBC、∠ADC=∠AEBD、大小关系不能确定14、由x<y得到a2x<a2y,则一定有()A、a>0B、a<0C、a≠0D、a为任意实数15、下列说法正确的是()A、的平方根是-1B、6是的算术平方根C、的立方根为-2D、0.4是-0.064的立方根三、解答题1、求不等式组的整数解。2、填空:如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC。理由如下:∵AD⊥BC于D,EG⊥BC于G()∴∠ADC=∠EGC=90°()∴AD∥EG()∴∠1=()=∠3()又∵∠E=∠1()∴∠2=∠3()∴AD平分∠BAC(角平分线的定义)。3、如图,直线DE交△ABC的边AB、AC于D、E,交BC延长线于F,若∠B=67°,∠ACB=74°,∠AED=48°,求∠BDF的度数.4、如图①,将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1A2B2B1(即阴影部分),在图②中,将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B3B2B1(即阴影部分)。(图①)(图②)(图③)(图④)(图⑤)(1)在图③中,请你类似地画一条有两个折点的折线,同样向右平移1个单位,从而得到一个封闭图形,并用阴影表示;(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积(设长方形水平方向长均为a,竖直方向长均为b):S1=,S2=,S3=;(3)如图④,在一块长方形草地上,有一条弯曲的小路(小路任何地方的水平宽度都是2个单位),请你写出空白部分表示的草地面积是____________________.(4)如图⑤,若在(3)中的草地又有一条横向的弯曲小路(小路任何地方的宽度都是1个单位),请你写出空白部分表示的草地的面积是__________________5、国泰玩具厂工人的工作时间:每月25天,每天8小时。待遇:按件计酬,每月另加福利工资100元,按月结算。该厂生产A、B两种产品,工人每生产一件A种产品,可得报酬0.75元,每生产一件B种产品,可得报酬1.40元。下表记录了工人小李的工作情况:生产A种产品件数(件) 生产B种产品件数(件) 总时间(分) 1 1 35 3 2 85 根据上表提供的信息,请回答下列问题:(1)小李每生产一件A种产品,每生产一件B种产品,分别需要多少分钟?(2)如果生产的各种产品的数目没有限制,那么小李每月的工资数目在什么范围之内?七年级数学新题型能力训练题(面向中考)1、我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。在电子数字计算机中用的是二进制,只要两个数码:0和1。如二进制中101=1×22+0×21+1×20等于十进制的数5,10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23,那么二进制中的1101等于十进制的数。2、从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前10个奇数(即当最后一个奇数是19时),它们的和是。3、小王利用计算机设计了一个计算程序,输入和输出的数据如下表:输入 … 1 2 3 4 5 … 输出 … … 那么,当输入数据是8时,输出的数据是()A、B、C、D、4、如下左图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要枚棋子.5、如下右图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第n个小房子用了块石子6、如下图是用棋子摆成的“上”字:第一个“上”字第二个“上”字第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用和枚棋子;(2)第n个“上”字需用枚棋子。7、如图一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分,则这串珠子被盒子遮住的部分有_______颗.8、根据下列5个图形及相应点的个数的变化规律:猜想第6个图形有个点,第n个图形中有个点。??????9、下面是按照一定规律画出的一列“树型”图:经观察可以发现:图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出5个“树枝”,图(4)比图(3)多出10个“树枝”,照此规律,图(7)比图(6)多出个“树枝”。10、观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式;(2)通过猜想写出与第n个点阵相对应的等式_____________________。11、用边长为1cm的小正方形搭成如下的塔状图形,则第n次所搭图形的周长是_______________cm(用含n的代数式表示)。12、如图,都是由边长为1的正方体叠成的图形。例如第(1)个图形的表面积为6个平方单位,第(2)个图形的表面积为18个平方单位,第(3)个图形的表面积是36个平方单位。依此规律。则第(5)个图形的表面积个平方单位13、图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是()A25B66C91D12014、如图是由大小相同的小立方体木块叠入而成的几何体,图⑴中有1个立方体,图⑵中有4个立方体,图⑶中有9个立方体,……按这样的规律叠放下去,第8个图中小立方体个数是.15、图1是棱长为a的小正方体,图2、图3由这样的小正方体摆放而成.按照这样的方法继续摆放,由上而下分别叫第一层、第二层、…、第n层,第n层的小正方体的个数为s.解答下列问题:(1)按照要求填表:n 1 2 3 4 … s 1 3 6 …
(2)写出当n=10时,s=.16、如图用火柴摆去系列图案,按这种方式摆下去,当每边摆10根时(即)时,需要的火柴棒总数为根;17、用火柴棒按如图的方式搭一行三角形,搭一个三角形需3支火柴棒,搭2个三角形需5支火柴棒,搭3个三角形需7支火柴棒,照这样的规律下去,搭n个三角形需要S支火柴棒,那么用n的式子表示S的式子是_______(n为正整数).18、如图所示,用同样规格的黑、白两色正方形瓷砖铺设观察下图:则第n个图形中需用黑色瓷砖____块.(用含n的代数式表示)17题图20、观察下列由棱长为1的小立方体摆成的图形,寻找规律:如图1中:共有1个小立方体,其中1个看得见,0个看不见;如图2中:共有8个小立方体,其中7个看得见,1个看不见;如图3中:共有27个小立方体,其中有19个看得见,8个看不见;……,则第6个图中,看不见的小立方体有个。21、下面的图形是由边长为l的正方形按照某种规律排列而组成的.观察图形,填写下表:图形 ① ② ③ 正方形的个数 8 图形的周长 18 (2)推测第n个图形中,正方形的个数为,周长为_______(都用含n的).23、某正方形园地是由边长为1的四个小正方形组成的,现要在园地上建一个花坛(阴影部分)使花坛面积是园地面积的一半,以下图中设计不合要求的是()
更多推荐
已知,购买,图形,生产,表示
发布评论