2024年4月12日发(作者:2022蛟川二模数学试卷)

人教版北师大初中数学中考几何如何巧妙做辅

助线大全

人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件

不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立

已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用

的策略。

一.添辅助线有二种情况:

1按定义添辅助线:

如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关

系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:

每个几何定理都有与它相对应的几何图形,我们 把它叫做基本图形,

添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图

形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有

规律可循。举例如下:

(1)平行线是个基本图形:

当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等

第三条直线

(2)等腰三角形是个简单的基本图形:

当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角

形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三

角形。

(3)等腰三角形中的重要线段是个重要的基本图形:

1

出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线

组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形

出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关

系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三

角形斜边上中线基本图形。

(5)三角形中位线基本图形

几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明

当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完

整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点

则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍

半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半

线段的平行线得三角形中位线基本图形。

(6)全等三角形:

全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现

两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形

全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现

一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形

全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行

线

(7)相似三角形:

相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转

型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线

2


更多推荐

线段,图形,基本,三角形,出现