2024年3月14日发(作者:广西中考数学试卷图片题)

====Word行业资料分享--可编辑版本--双击可删====

启航学校几何图形初步复习汇编

第一板块:《几何图形初步》知识聚焦

第二板块:《几何图形初步》考点解析

第三板块:《几何图形初步》试题荟萃

第四板块:《几何图形初步》解题宝贝

第一板块:《几何图形初步》知识聚焦

4.1多姿多彩的图形

柱体(棱柱、圆柱)

立体图形

椎体(棱锥、圆锥)

1.

几何图形

球体

平面图形

(1)平面展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。

这样的平面图形称为相应立体图形的展开图。

(2)从不同的方向看(“三视图”)

3.几何图形的形成:点动成线,线动成面,面动成体。

4.几何图形的结构:点、线、面、体组成几何图形。点是构成图形的基本元素。

4.2直线、射线、线段

1.点:表示一个物体的位置,通常用一个大写字母表示,如点A、点B。

(1)直线的表示方法:①可以用这条直线上任意两点的字母(大写)来表示;②用一个小写字母来表示。

(2)直线的基本性质:经过两点有一条直线,并且只有一条直线。简述为,两点确定一条直线。

(3)直线的特征:

①直线没有端点,不可度量,向两方无限延伸;

②直线没有粗细;

③两点确定一条直线;

④两条直线相交有唯一一个交点。

(4)点与直线的位置关系:

①点在直线上(也可以说这条直线经过这个点);

②点在直线外(也可以说直线不经过这个点)。

(5)两条直线的位置关系有两种——相交、平行

3.射线:直线上一点和它一旁的部分叫做射线。

(1)射线的表示方法:

①用两个大写字母表示,表示端点的字母写在前面,在两个字母前加上“射线”;

②用一个小写字母表示。

(2)射线的性质:

①射线是直线的一部分;

②射线只向一方无限延伸,有一个端点,不能度量、不能比较长短;

③射线上有无穷多个点;

④两条射线的公共点可能没有,可能只有一个,可能有无穷多个。

4.线段:直线上两点和它们之间的部分叫做线段。

(1)线段的特点:线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短。

(2)线段的表示方法:

====Word行业资料分享--可编辑版本--双击可删====

①用两个端点的大写字母表示;

②用一个小写字母表示。

(3)线段的基本性质:两点的所有连线中,线段最短。简称,两点之间线段最短。

(4)两点的距离:连接两点间的线段的长度叫做这两点的距离。

(5)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点。

. .

如图,点M将线段AB分成AM=BM两段,M即为线段AB的中点。

A B

1

判定:∵ AM=BM(或AM=BM=AB,AB=2AM=2BM),M在AB上,∴ M是线段AB的中点。

2

性质:∵M是线段AB的中点,∴AM=BM(或AM=BM=

1

AB,AB=2AM=2BM)。

2

(6)线段大小的比较方法:

(1)叠合法;

(2)度量法;

(3)估测法。比较线段的大小与比较数的大小一样,也可以用“>”、“<”或“=”来表示,字母前面

的“线段”省略不写。线段的和差与其数量的和差是一致的。

4.3角

1.角:

(1)有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

(2)角也可以看做是由一条射线绕着它的端点旋转而形成的图形。射线旋转时经过的平面部分称为角的内

部,平面的其余部分称为角的外部。

注意:

①角的大小与边的长短无关,只与构成角的两边张开的幅度大小有关;

②角的大小可以度量,可以比较,也可以参与运算。

2.角的表示方法:

①用角的符号和数字表示一个角;

②用角的符号和小写的希腊字母表示一个角;

③用角的符号和一个大写的英文字母表示一个独立的角(在一顶点处只有一个角);

④用角的符号和三个大写的英文字母表示任意一个角,表示顶点的字母要写在中间。

3.角的分类:按角的大小可分为锐角、直角、钝角、平角、周角等。

4.角的度量单位及换算:

1°=60′,1′=60″,1周角=360°,1平角=180°,1直角=90°,

1周角=2平角=4直角=360°, 1平角=2直角=180°。

5.角的大小的比较方法:

(1)叠合法:比较两个角的大小时,把角叠合起来使两个角的顶点及一边重合,另一边落在同一条边的同

旁,则可比较大小;

(2)度量法:量出角的度数,就可以按照角的度数的大小来比较角的大小。

6.角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

如图,射线OC将∠AOB分成两个相等的角,即∠1=∠2,则OC是∠AOB的平分线。

1

∠AOB,∠AOB=2∠1=2∠2 ∴OC平分∠AOB。

2

1

性质:∵OC平分∠AOB,∴∠1=∠2(或∠1=∠2=∠AOB,∠AOB=2∠1=2∠2)。

A

2

判定:∵∠1=∠2(或∠1=∠2=

(1)余角:如果两个角的和等于90°(直角),就说这两个角互为余角。

(2)补角:如果两个角的和等于180°(平角),就说这两个角互为补角。

(3)互余、互补的性质:同角(或等角)的余角(或补角)相等。

C

O

1

2

B


更多推荐

线段,表示,直线,图形,射线