2024年1月2日发(作者:2008高考数学试卷文科)

一、填空题

21.2xyz8;2.

2 ;3. ;4.

yex(c1cosxc2sinx);5. (2,2,3).

2

二、选择题

1.A;2.C;3.A;4.D;5.B.

三、解:

xz2z设zf(xy,)siny,其中f具有二阶连续偏导数,求.

,yxxy解:z11(f1yf2)0yf1f2,

xyy2zx11xxf12(2)]2f2[f21xf22(2)]f1y[f11xyyyyyf1xyf111xff.

22322yyìïfx¢=2x=0)

2四、【解】(1)区域D内部:í 得点(0,0)

f(0,0=¢f=-2y=0ïîyx (2)区域D边界:f(x,y)=x2-(4-4x2)+2=5x2-2

(-1#3f(0,?2) 得点(北

f(?1,0),1,0)及(0,2) 所以最大值是3,最小值是-2.

五、、解:设D1:1x1,x2y2;D2:1x1,0yx2,则

1)

-2

Iyx2dyx2dyx2d

DD1D2(yx2)d(x2y)dD1D2dx2(yx)dydx(yx2)dy

1x101221x2225六、由已知得QP2x2x2x2x即

2ef(x)ef(x)15ef(x),f(x)3f(x)e.

xy3dx3dx16f(x)e[e2xedxc]e3x(e5xc).将f(0)代入得c1.故55

111f(x)e2xe3x,I0dxe4(e4e6)dy3(e10).

55510七、【解】I= 记I1=2312232xzdydz+xy-zdzdx+2xy+yzdxdy

蝌2aS()()蝌xzdydz+(xy-z)dzdx+(2xy+yz)dxdy

2232S

添加1:z0

x2y2a2 ,取下侧

1 则:I1

1 又:1xyzdv2222254a

ddsind50002a 又:12xyy2zdxdy2xydxdy

2xydxdy0

11Dxy123Ia

21a5an(1)n1(1)n11,x1时原级数为八、an,Rlim收敛,故此幂级数的收na2n1n12n1n1

I敛域为1,1。

(1)n12n设s(x)x,(1x1),则

n12n1x(1)n12n(1)n12n1s(x)xxxx((x2)n1dx)0n12n1n12n1n1x((x2)n1)dx)xarctanx,(1x1)0n1x

(1)n1故s(1) .

4n12n1九、已知前n项部分和为

Sn(1)k1(k1n11)ukuk1111111...(1)n1()

u1u2u3u4unun1111(1)n1()u1unun1n11由于lim1,故lim0,于是limSn,因而原级数收敛.

nununu1nn

11unun111由lim发散,故原级数条件收敛.

2,知n1/nuun1nn1


更多推荐

级数,收敛,高考,导数,边界,部分,数学试卷,具有