2024年3月31日发(作者:数学试卷word怎么编辑)

中考数学几何证明题「含答案」

重庆中考(往届)数学24题专题练习

1、如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,

连接BE,CE

(1)求证:BE=CE;

(2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点

G,连接DG,求证:BG=DG+CD.

在BG上取BH=AB=CD,连EH,显然△ABE与△CDE全等,则

∠ABE=∠DCE,∠AEB=∠DEC

又∠BEC=90°=∠BFC,对顶角∠BGE=∠CGF,故∠FBE=∠DCE,

所以∠ABE=∠FBE

在BF上取BH=AB,连接EH,由BH=AB,∠ABE=∠FBE,

BE=BE,故△ABE与△HBE全等

故∠AEB=∠HEB,AE=EH

而∠AEB+∠DEC+∠BEC=180°,∠AEB=∠DEC,∠BEC=90°

所以∠AEB=∠DEC=45°=∠HEB

故∠AEH=∠AEB+∠HEB=90°=∠HED

同理,∠DEG=45°=∠HEG

EH=AE=ED,EG=EG

故△HEG与△FEG全等,所以HG=DG

即BG=BH+HG=AB+DG=DG+CD2、如图,在直角梯形ABCD

中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC

交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于

点G.已知G为CH的中点.

(1)若HE=HG,求证:△EBH≌△GFC;

(2)若CD=4,BH=1,求AD的长.

3、如图,梯形ABCD中,AB∥CD,AD=DC=BC,∠DAB=60°,

E是对角线AC延长线上一点,F是AD延长线上的一点,且EB⊥AB,

EF⊥AF.

(1)当CE=1时,求△BCE的面积;

(2)求证:BD=EF+CE.

4、如图.在平行四边形ABCD中,O为对角线的交点,点E为线

段BC延长线上的一点,且.过点E

EF∥CA,交CD于点F,连接OF.

(1)求证:OF∥BC;

(2)如果梯形OBEF是等腰梯形,判断四边形ABCD的形状,并

给出证明.

5、如图,梯形ABCD中,AD∥BC,∠ABC=90°,BF⊥CD于F,

延长BF交AD的延长线于E,延长CD交BA的延长线于G,且DG=DE,

AB=,CF=6.

(1)求线段CD的长;

(2)H在边BF上,且∠HDF=∠E,连接CH,求证:∠BCH=45°

﹣∠EBC.

6、如图,直角梯形ABCD中,AD∥BC,∠B=90°,∠D=45°.

(1)若AB=6cm,求梯形ABCD的面积;

(2)若E、F、G、H分别是梯形ABCD的边AB、BC、CD、DA

上一点,且满足EF=GH,∠EFH=∠FHG,求证:HD=BE+BF.

7、已知:如图,ABCD中,对角线AC,BD相交于点O,延长

CD至F,使DF=CD,连接BF交AD于点E.

(1)求证:AE=ED;

(2)若AB=BC,求∠CAF的度数.

8、已知:如图,在正方形ABCD中,点G是BC延长线上一点,

连接AG,分别交BD、CD于点E、F.

(1)求证:∠DAE=∠DCE;

(2)当CG=CE时,试判断CF与EG之间有怎样的数量关系?并

证明你的结论.

9、如图,已知正方形ABCD,点E是BC上一点,点F是CD延

长线上一点,连接EF,若BE=DF,点P是EF的中点.

(1)求证:DP平分∠ADC;


更多推荐

梯形,数学,证明,数学试卷