2023年12月7日发(作者:吹泡泡数学试卷可以打印)
小学数学六年级上册应用题解答题精选练习题及答案
一、六年级数学上册应用题解答题
1.红光农场去年植树的数量比前年成活的树木多40%,去年的成活率是60%。去年成活的树木数量是前年成活树木的百分之多少?
2.一张桌子可以坐6人,两张桌子拼起来可以坐10人,三张桌子拼起来可以坐14人.像这样共几张桌子拼起来可以坐50人?
3.水果店运来一批橘子,第一天卖出总数的40%,第二天卖出140千克,剩下的与卖出的重量比是1:3,这批橘子重多少千克?
4.下图是由两个正方形和一个圆组成的,已知大正方形的面积是36cm2,那么阴影部分的面积是多少?(圆周率取3.14)
5.图中两个正方形的面积相差400平方厘米,则圆A与圆B的面积相差多少?
6.分别以直角三角形ABC的三条边为直径画了三个半圆,得到下图。求阴影部分的周长和面积。(单位:cm)
7.列出综合算式,不计算。
一根电线先截去它的40%,还剩下12米,再截去多少米后,这时正好剩下这根电线全长的1?
418.果园里的桃树比苹果树少50棵,苹果树的和桃树的40%相等,梨树的棵数与苹果树3的棵数之比是2∶3,果园里这三种树各有多少棵?
9.甲乙两船同时从A码头出发,沿着同一条航线匀速向相距280千米的B码头航行,4小时后导航系统显示两船相距20千米。已知甲船的速度是乙船的87.5%,求甲乙两船的速度。(列方程解答)
10.一辆大巴车从濮阳开往郑州,行了一段路程后,离郑州还有135千米,接着又行了全程的20%,这时已行路程和未行路程的比是3∶2,濮阳与郑州相距多少千米?
11.某商场一天内销售两种服装的情况是,甲种服装共卖得1560元,乙种服装共卖得1350元,若按两种服装的成本分别计算,甲种服装盈利25%,乙种服装亏本10%,试问该商场这一天是盈利还是亏本?盈或亏多少元?
12.一个书架,原来上层和下层中书的本数比是8:7,如果从上层取出8本书放放下层,这时上层和下层的比为4:5,原来上层和下层各有图书多少本?
13.果园里有500棵果树,其中苹果树和梨树占总数的 40%,其余的是桃树和杏树,桃树和杏树的比是 3:2。杏树有多少棵?
14.六年级一、二、三3个班献爱心捐书,一班捐的本数是三个班总数的2,二、三两个5班捐的本数比是4:3.已知三个班捐书总数为700本.求三班捐了多少本?
15.电子厂原有工人450人,其中女工占36%。因为生产需要又招进一批女工,这时女工人数占全厂工人总数的40%。又招进女工多少人?
16.某服装店将两件不同的衣服都以每件120元的价格出售,与进价相比,结果一件赚了20%,另一件亏了20%。服装店老板出售这两件衣服是赚了还是亏了?赚了(或亏了)多少元?
17.学校要买 48
支钢笔,每支 10
元。三个商店有不同的出售方案。
甲商店:买 5
支送 1
支;
乙商店:一律九折;
丙商店:满 500
元
八
折优惠。
学校去哪个商店买合算?
18.规定:如图1中,方格里的数表示在其周围8个方格中共有多少个△。即以“1”为中心,在它的四周8个方格中只能有1个△;以“2”为中心,在它的四周8个方格中只能有2个△;以“3”为中心,在它的四周8个方格中只能有3个△;依此类推。
按上述规定,在如图2中一共可以画12个△。现在已经画好了其中的2个,请你在合适的空格中补上其余的10个。
19.有一座四层楼房,每个窗户的4块玻璃分别涂上红色和白色,每个窗户代表一个数字,每层楼有三个窗户,由左向右表示一个三位数,四个楼层表示的三位数有:791、275、362、612。问:第二层楼表示哪个三位数?
20.下图依次排列着5盏灯,用不同位置上亮灯和灭灯表示一个具体的数(亮灯用示,灭灯用表示)。请根据下面前四种状况所表示的数,完成下列问题。
表(1)写出图⑤表示的数。
(2)在图⑥中画出亮灯和灭灯的状况。
①③⑤1 ②13913④3
1+9+81=91
93
(
) ⑥21.如图,第二个图形是由第一个图形连接三边中点而得到的,第三个图形是由第二个图形中间的一个三角形连接三边中点而得到的,以此类推……分别写出第二个图形、第三个图形和第四个图形中的三角形个数.如果第n个图形中的三角形个数为8057,n是多少?
22.如图4×4方格纸片内,两面都写着1,2,3,4,…,16(同一位置的格子正反面数字相同),现依下列顺序逐步折叠:(1)上半部往下折叠盖在下半部上;(2)右半部往左折叠盖在左半部上;(3)左半部往右折叠盖在右半部上;(4)下半部往上折叠盖在上半部上。经过上述操作,纸片在最上面的数字是(________)。
1
5
9
13
2
6
10
14
3
7
11
15
4
8
12
16
23.数与形。
(1)仔细观察每幅图和它下面的算式之间的关系,根据发现的规律,接着画出后面的两个图形,并完成图形下面的算式。
221221
3322232
5423243
75242
==6252
==(2)根据上面的规律,完成下面的算式。
1002-992=(
)+(
)=(
)
20202-20192=(
)+(
)=(
)
24.二进制时钟是一种“特殊的时钟”,它用4行6列24盏灯来表示时间(图1)竖着看,从左到右每两列为一组,每列依次表示时、分、秒的十位数字和个位数字;每列从下往上的灯依次表示1、2、4、8(表示灯亮,○表示灯熄灭,灯灭代表0),同一列中多盏灯同时亮,要把它们各自表示的数加起来得到对应的数。例如,图1中最右侧一列,从下往上第一、二、三盏灯是,分别表示数字1、2、4,1+2+4=7,此时这列灯表示数字7,按照这样的表示方法,请在图2的括号里写出此时时钟表示的时刻。图3是雯雯同学上午进入校门的时刻,请涂出二进制时钟上的显示。
25.学校举行庆“六一”男女生大合唱,原计划合唱队中女生人数占合唱队总人数的40%,后来考虑到合唱效果,将其中5名女生换成了5名男生,这时女生与男生人数的比是3∶7。合唱队共有男女生多少名?
26.如图,一只狗被一根12米长的绳子拴在一建筑物的墙角上,这个建筑的平面图是边长为10米的正方形,狗不能进入建筑物内活动.求狗所能活动到的地面部分的面积.(精确到1平方米) 27.甲乙两车分别从A、B两地相向而行,甲车行驶了1.5小时乙车才开始出发,乙车以80千米/时的速度行2.5小时与甲车相遇。甲车中途休息了1小时,当两车相遇时,甲所行驶的路程占AB两地总路程的3,甲车的行驶速度是多少千米?
71128.涛涛读一本故事书,第一天读了这本书的,第二天读了这本书的,这时还剩95页65没有读。这本故事书共有多少页?
29.甲乙两仓库共存粮54吨,甲仓用了仓各存粮多少吨?
43,乙仓用了后,剩下的两仓一样多,原来两545330.一个书架上下两层共有图书450本,如果将上层书增加它的,下层书增加它的,108这时上、下两层图书的本数就一样多.这个书架原来上、下层各有图书多少本?
31.汽车往返甲、乙两地.去的时候平均每小时行50千米,返回的时候平均每小时行60千米,汽车往返两地平均每小时行多少千米?
32.修一条公路,已经修完了全程的
条公路全长多少千米.
33.
为了绿化校园,某校购买了一批树苗,由四、五、六三个年级共同种植,五年级种植了这批树苗的多2棵,六年级种植了这批树苗的少1棵,四年级种植了剩下的10棵.五、六年级分别种植了多少棵?
34.一个水池早晨放满了水,上午用去这池水的,下午又用去25升,这时水池的水比半池水还多2升,这个水池早晨用去了多少水?
11
,又修了剩余的
,这时距终点还有6千米,这541135.一份稿件,甲5小时先打了,乙6小时又打了剩下稿件的2,最后剩下的一些由5甲、乙两人合打,还需多少小时完成?
36.三角形ABC的三条边都是6厘米,高AH为5.2厘米,分别以A、B、C三点为圆心,6厘米长为半径画弧,求这三段弧所围成的图形的面积。(取3.14) 37.果园里有桃树、梨树、苹果树共700棵,桃树与梨树的比是2:3,梨树与苹果树的比是4:5.果园里有桃树、梨树、苹果树各多少棵?
38.已知,在直角三角形ABC中,∠ACB=90°,AC=8,BC=6,AB=10,以AB边为直径作半圆,把4个相同的直角三角形通过一定的图形运动拼成四叶草的形状(如图所示),求阴影部分的面积.
139.实验小学举行科技大赛,五年级上交作品15件,六年级比五年级多交。两个年级共5交了多少件作品?
40.一个工程队修一条公路,第一天修45米,第二天修全长的1,第二天修的米数又恰41好比第一天多,这条公路全长多少米?
541.用一根240厘米的铁丝制作成一个长方体框架,长、宽、高的比是5∶3∶4,求这个长方体框架的体积是多少立方厘米?
42.甲、乙两车分别从A、B两地同时出发,相向而行,4小时后在距离中点80千米处相遇,甲乙两车的速度比是9∶5,甲每小时行多少千米?
43.某口罩厂两个车间计划生产相同个数的防尘口罩和医用口罩,当医用口罩完成了时,防尘口罩刚好完成了253。这时,为了提前完成医用口罩的生产任务,改进了生产工7艺,效率提高了50%。这样,当医用口罩完成任务时,防尘口罩还有3500个没完成,原计划生产医用口罩多少个?
44.一辆卡车和一辆客车分别从甲、乙两城同时出发,相向而行,卡车到达乙城后立即返回,客车到达甲城后也立即返回,已知卡车和客车的速度比为4:3,两车第一次相遇地点距离第二次相遇地点24千米,求甲、乙两城相距多少千米?
45.甲箱子有50个球,乙箱子有15个球,从甲箱拿出多少个球放入乙箱里才使得甲、乙两箱球的数量比是6:7?
46.在直角三角形ABC中,这个三角形的面积是90平方厘米,D是BC的中点,E是AD中一点,AE与ED的比是2∶1,求阴影部分的面积?
47.某校参加数学竞赛的男生与女生的人数比是6∶5,后来又增加了5名女生,这时女生人数正好是全班的一半。原来参加数学竞赛的女生有多少人?
48.甲、乙二人同时从A地走向B地,当甲走了全程的地还有53时,乙走了全程的;当甲离B751时,乙离B地还有50米,A、B两地相距多少米?
74,这群鸭子有多少只?
549.小明放一群鸭子,已知岸上的只数与水中的只数比是3:4,现在从水中上岸9只后,岸上的只数是水中的50.公园里有一个圆形花圃(如图),直径20米,花圃中的绿地面积是254.34平方米,花圃中石子路的宽度是多少米?<5分>
【参考答案】***试卷处理标记,请不要删除
一、六年级数学上册应用题解答题
1.84%
【详解】
(1+40%)60%
=1.40.6
=0.84
=84%
2.12张
【分析】
第一张桌子可以坐6人; 拼2张桌子可以坐6+4×1=10人;
拼3张桌子可以坐6+4×2=14人;
故n张桌子拼在一起可以坐6+4(n-1)=4n+2.
【详解】
解:设第n张桌子可以坐50人.
4n+2=50
n=12
答:像这样12张桌子拼起来可以坐50人.
3.400千克
【详解】
1+3=4, 140÷(1﹣40%﹣
=140÷0.35,
=400(千克);
答:这批橘子重400千克
4.26平方厘米
【分析】
根据图意可得:阴影部分的面积=圆的面积-小正方形的面积,已知大正方形的面积是),
36cm2,36=6×6,即大正方形的边长是6cm,也正是圆的直径;小正方形的对角线的长度是6cm,小正方形的面积是6×6÷2=18(平方厘米)。据此解答即可。
【详解】
36=6×6
3.14×(6÷2)2-6×6÷2
=3.14×9-18
=28.26-18
=10.26(平方厘米)
答:阴影部分的面积是10.26平方厘米。
【点睛】
本题属于求圆与组合图形面积的问题,这种类型的题目主要明确组合图形是由哪些基本的图形构成的,然后看是求几种图形的面积和还是求面积差,然后根据面积公式解答即可。
5.314cm2
【分析】
本题可以用假设法作答,可以设大圆半径为R,小圆半径为r,由此得出:SA-SB=πR2-πr2=π(R2-r2),S大正方形-S小正方形=2R×2R-2r×2r=4(R2-r2),因为题中已经告诉了两个正方形的面积之差,所以4(R2-r2)=400,R2-r2=100,然后代入π(R2-r2)作答即可。
【详解】
假设大圆半径为R,小圆半径为r。
SA-SB=πR2-πr2=π(R2-r2)
因为S大正方形-S小正方形=2R×2R-2r×2r=4(R2-r2)=400, 所以R2-r2=100,
所以圆A与圆B的面积相差3.14×100=314(cm2)
6.68厘米;24平方厘米
【详解】
略
17.12140%140%
4【分析】
根据题意可得,12米占这根电线总长度的140%,据此求出这根电线总长度。因为第二1次截取的长度占这根电线长度的140%,最后求出第二次截取的长度即可。
4【详解】
112140%140%
4=20×0.35
=7.5(米)
答:需再截去7.5米,这时正好剩下这根电线全长的四分之一。
【点睛】
本题考查百分数,解答本题的关键是找准单位“1”。
8.桃树250棵,苹果树300棵,梨树200棵
【分析】
1将桃树棵数看作单位“1”,桃树的40%÷苹果树的=苹果树占桃树的对应分率,确定50棵3的对应分率,用50棵÷对应分率=桃树棵数;桃树棵数+50=苹果树棵数;根据梨树的棵数与苹果树的棵数之比是2∶3,确定梨树占苹果树的分率,用苹果棵数×梨树对应分率=梨树棵数。
【详解】
1桃树:5040%1
3=501.21
=500.2
250(棵)
苹果树:250+50=300(棵)
2梨树:300=200(棵)
3答:桃树有250棵,苹果树有300棵,梨树有200棵。
【点睛】
部分数量÷对应分率=整体数量,两数相除又叫两个数的比。
9.甲船35千米/时,乙船40千米/时 【分析】
设乙船速度是x千米/时,则甲船速度是87.5%x千米/时,乙船速度×时间-甲船速度×时间=20千米,列出方程求出乙船速度,乙船速度×87.5%=甲船速度。
【详解】
解:设乙船速度是x千米/时,则甲船速度是87.5%x千米/时。
4x-87.5%x×4=20
4x-3.5x=20
0.5x=20
x=40
40×87.5%=35(千米/时)
答:甲船速度是35千米/时,乙船速度是40千米/时。
【点睛】
用方程解决问题的关键是找到等量关系,整体数量×部分对应百分率=部分数量。
10.225千米
【分析】
根据已行路程和未行路程的比是3∶2,可知未行的路程占总路程的总路程的(【详解】
135÷(2+20%)
322+20%),根据分数除法的意义解答即可。
322
,则135千米占323=135÷
5=225(千米)
答:濮阳与郑州相距225千米。
【点睛】
此题考查比与百分数的综合应用,关键是找出135千米对应的分率,根据已知一个数的几分之几是多少求这个数用除法来解答。
11.盈利;盈利162元
【分析】
由题意可知,甲种服装盈利25%,就是比成本多了25%,那么卖价就是成本的1+25%=125%;乙种服装亏本10%,就是比成本少了10%,那么卖价就是成本的1-10%=90%;根据“已知一个数的百分之几是多少,求这个数”,用除法计算出甲种服装和乙种服装的成本价,然后把一天的销售总额加起来跟成本总价相比,就知道是盈亏多少了。
【详解】
1560÷(1+25%)
=1560÷1.25
=1248(元)
1350÷(1-10%) =1350÷90%
=1500(元)
1560+1350=2910(元)
1248+1500=2748(元)
2910-2748=162(元)
答:该商场这一天盈利了,盈利162元。
【点睛】
解答此题的关键是要求出甲乙两种服装的成本价,根据已知一个数的百分之几是多少,求这个数用除法计算。
12.上层48本;下层42本
【详解】
8÷(84﹣)
8745=8÷(=8÷
84﹣)
1594
45=90(本)
则原来上层有书:90×下层有书:90×8=48(本)
877=42(本)
87答:原来上层有书48本,下层有书42本。
13.120棵
【详解】
500×(1-40%)×[2÷(3+2)]=120(棵)
14.180本
【详解】
700×2=280(本)
5(700﹣280)×=420×3
73
43=180(本)
答:三班捐书180本.
15.30人
【详解】
450×(1-36%)÷(1-40%)-450=30(人)
答:又招进女工30人。
16.亏了
亏了10元 【详解】
120-120÷(1+20%)=20(元)
120÷(1-20%)-120=30(元)
20<30
所以亏了
30-20=10(元)
答:服装店老板出售这两件衣服亏了,亏了10元。
17.丙店
【解析】
【详解】
甲商店:48÷(5+1)=8(支)
(48-8)×10
=40×10
=400(元)
乙商店:
10×90%×48=432(元)
丙商店:
可买50支以达到优惠要求.
50×10×80%=400(元)
432>400由此可以发现,乙店花钱最多,甲乙两店虽然各花了400元,但是丙店多买了两支,所以到丙店最合算.
18.见详解
【分析】
根据题意,“1”的四周8个方格中只能有1个△;“2”的四周8个方格中只能有2个△;“3”的四周8个方格中只能有3个△,由此根据图中的两个三角形,进而画出其它的三角形。
【详解】
如图:
【点睛】
关键是根据题意得出规律,再由规律解决问题。
19.612
【分析】
给出的四个数中362和612的个位数字相同,第二和第四层右边窗户符号也相同,可以肯定这两层分别代表362和612。这两个数中又有数字6是一样的,对照第二层和第四层的窗户,可以确定第二层代表612。
【详解】
第二层代表612,因为362和612的个位数字相同,又有数字6是一样的,对照第二层和第四层的窗户,所以第二层代表612。
【点睛】
本题考查数与形,解答本题的关键是根据数字的特征找到图形规律。
20.117;【解析】
【详解】
略
21.解:第一个图形中三角形个数:1个;
第二个图形中三角形个数:1×4+1=5(个);
第三个图形中三角形个数:2×4+1=9(个);
第四个图形中三角形个数:3×4+1=13(个);
第n个图形中三角形个数:
(n-1)×4+1=(4n-3)(个)
4n-3=8057,n=2015.
答:n是第2015个图形.
【解析】
【详解】
由已知图形中三角形个数推出三角形个数与图形个数之间的数量关系式,再根据题意代入数据计算即可解答.
22.14
【分析】
(1)上半部往下折叠盖在下半部上,这时上面的数字是1、2、3、4、5、6、7、8;(2)右半部往左折叠盖在左半部上,这时上面的数字是11、12、15、16;(3)左半部往右折叠盖在右半部上,这时上面的数字是9、13;(4)下半部往上折叠盖在上半部上,这时上面的数字是14,据此解答即可。
【详解】
纸片在最上面的数字是14;
【点睛】
解答本题时可以进行实践,得出结果。
23.(1)
=5+4
=9;
=6+5
=11
(2)100;99;199
2020;2019;4039
【分析】
观察可知,大正方形和空白正方形的边长依次增加1,相邻两个数的平方的差等于这两个数的和,据此分析。
【详解】
(1)
221221
3322232
5423243
75242=5+4
=96252=6+5
=11(2)根据上面的规律,完成下面的算式。
1002-992=100+99=199
20202-20192=2020+2019=4039
【点睛】
数和图形的规律是相对应的,图形的排列有什么变化规律,数的排列就有相应的变化规律。
24.图2(19:47:26); 图3【分析】
(1)同一列中多盏灯同时亮,要把它们各自表示的数加起来得到对应的数,注意灯灭表示0,那么图2左侧第1列代表1,第2列代表1+8=9,也就是19时;第3列表示4,第4列表示1+2+4=7,也就是47分;第5列表示2,第6列表示2+4=6,也就是26秒;
(2)图3是左侧第1列是0,所以不涂;第2列是7,从下往上涂代表数字1、2、4的灯亮;第3列代表数字4的灯亮,其它灯灭;第4列代表数字1、8的灯亮;第5列代表数字1、4的灯亮,其它灯灭;第6列代表数字2、4的灯亮,其它灯灭。
【详解】
据分析可得,图2代表(19:47:26);
图3是:
故答案为:图2(19:47:26);
图3是【点睛】
本题考查数与形,解答本题的关键就是理解同一列中多盏灯同时亮,要把它们各自表示的数加起来得到对应的数的概念。
25.50名
【分析】
通过女生与男生人数的比是3∶7,求出女生占总人数的分率,单位“1”是总人数,用少了的5名女生÷对应分率=总人数。
【详解】
女生与男生人数的比是3∶7,那么女生占总人数的5÷(40%-=5÷1
10。
33=
37103)
10=50(名)
答:合唱队共有男女生50名。
【点睛】
本题考查了比的意义,百分数和分数复合应用题,关键是确定单位“1”,找到部分和对应分率。
26.345平方米
【详解】 如图所示:
31×3.14×122+2××3.14×(12﹣10)2
44=108×3.14+2×3.14
=110×3.14
≈345(平方米)
答:狗所能活动到的地面部分的面积345平方米.
27.50千米/时
【分析】
当甲乙相遇时,甲乙两车的路程和恰好等于AB两地的总路程。据此先利用减法求出乙路程占总路程的几分之几,再用乙路程除以它占总路程的几分之一求出总路程,从而利用乘法求出甲路程。分析题意,甲先是行驶了1.5小时,中途停了1小时,所以后续又是行驶了1.5小时,共行驶了3小时。用甲路程除以甲行驶的时间,求出甲的速度即可。
【详解】
总路程:
80×2.5÷(1-=200÷4
73=150(千米)
73)
7=350(千米)
甲路程:350×甲速度:
150÷(1.5+2.5-1)
=150÷3
=50(千米/时)
答:甲车的行驶速度是50千米/时。
【点睛】
本题考查了相遇问题,相遇时甲乙两车的路程和恰好等于总路程。
28.150页 【分析】
第一天读了这本书的本书的11,第二天读了这本书的,都是以这本书为单位 “1”,那么还剩下这5619,量率对应求
单位“1”。
30【详解】
11119
653019150(页)
3095答:这本故事书共有150页。
【点睛】
本题考查的是分数除法应用题,在用量率对应求单位“1”时,量和分率一定要相互对应。
29.甲:30吨,乙:24吨
【分析】
设甲仓库原有粮食x吨,则乙仓库原有粮为(54-x)吨;甲用了-4之后,剩余粮食为(15433)x;乙仓用了之后,剩余粮食为(1-)×(54-x);此时剩下的两仓一样多,544据此列出方程解答。
【详解】
解:设甲仓库原有粮食x吨,则乙仓库原有粮为(54-x)吨。
(1-43)x=(1-)×(54-x)
5411x=×(54-x)
45111x=×54-x
445111x+x=×54
445954x=
420x=549÷
420x=30
54-30=24(吨)
答:原甲仓存粮30吨,乙仓存粮24吨。
【点睛】
用方程解答关键是找出等量关系式:甲仓库原存粮吨数×剩余存粮所占分率=乙仓库原存粮吨数×剩余存粮所占分率,并根据等式的性质解方程。
30.上层200本,下层250本
【详解】 解:设上层书架原有x本书,则下层书架原有(450﹣x)本,得
53(1+)x=(450﹣x)×(1+)
1081313x=(450﹣x)×
1081313x=585﹣x
108117x=585
40x=200
450﹣200=250(本)
答:原来上层书架有图书200本、下层书架有图书250本.
31.600千米
1111),
5060【详解】
(1+1)÷(=2÷=11
,
300600(千米);
11600千米.
11答:汽车往返两地平均每小时行32.10千米
【详解】
6÷[1﹣
=6÷(
=6÷(
3=6÷
5111
﹣(1﹣
)× ]
544331
﹣ ×
)
54433
﹣
)
420=10(千米)
答:这条公路全长是10千米.
33.五年级:24棵
六年级:32棵
【详解】
(10−1+2)÷(1−−)
=66棵
66×+2=24(棵)
66×−1=32(棵) 答:五年级种植了24棵,六年级种植了32棵.
34.18升
【解析】
【分析】
把这池水的体积看作单位“1”,若下午用去25+2=27升,那么此时剩余的水的体积与用去水的体积相等,也就是用去水的体积占这池水体积的,先求出这池水体积的比上午用去水的体积多的分率,也就是27升水占这池水体积的分率,再依据分数除法意义,求出这池水的体积,最后依据分数乘法意义即可解答.
【详解】
(25+2)÷(﹣)×
=27=90×
=18(升)
答:这个水池早晨用去了18升水.
335.3小时
4×
【分析】
111将整份稿件看作整体“1”,甲5小时打了,所以甲的工作效率是:5;乙6小时5255111111打了剩下稿件的2,即(1)的2,所以乙的工作效率是:(1)6。最后甲乙5521511两人合打的工作量也是(1)的2,工作效率是两人的工作效率之和,然后再根据“工作时5间=工作总量÷工作效率”来计算他们所需要的时间。
【详解】
11111(1)5(1)6
52552411416
522552211
5251528
57533(小时)
43答:还需3小时完成。
4【点睛】 本题考查工程问题,找到甲乙两人的工作效率非常关键。
36.32平方厘米
【分析】
根据题干三角形ABC是等边三角形,所以每个角的度数都是60°,那么图中就出现了3个半径为6厘米,圆心角为60°的扇形;这三段弧所围成的图形的面积=三个扇形的面积之和﹣2个等边三角形的面积,由此利用扇形的面积公式和三角形的面积公式即可解决问题。
【详解】
一个小扇形的面积是:
60×3.14×62
360=60×3.14×36
360=18.84(平方厘米)
等边三角形的面积为:
6×5.2÷2=15.6(平方厘米)
这三段弧所围成的图形的面积是:
18.84×3﹣15.6×2
=56.52﹣31.2
=25.32(平方厘米)
答:这三段弧所围成的图形的面积是25.32平方厘米。
【点睛】
此题考查了扇形的面积公式与三角形的面积公式的灵活应用,根据题干,将这个组合图形的面积问题转化成求扇形和三角形的面积问题是解决本题的关键。
37.桃树160棵,梨树240棵,苹果树300棵
【解析】
【详解】
解:因为桃树与梨树的比是(2×4):(3×4)=8:12
梨树与苹果树的比是(4×3):(5×3)=12:15
所以桃树、梨树、苹果树的比是:8:12:15
所以700÷(8+12+15)
=700÷35
=20(棵)
桃树:20×8=160(棵)
梨树:20×12=240(棵)
苹果树:20×15=300(棵),
答:果园里有桃树160棵,梨树240棵,苹果树300棵
38.61
【详解】
根据题意得: [3.14×(10÷2)2×=[39.25﹣24]×4
=15.25×4
=61
11﹣×6×8]×4
22答:阴影部分的面积是61.
39.33件
【分析】
11六年级比五年级多交,说明六年级作品占五年级作品的1,据此求出六年级作品数55量,最后求两个年级共交了多少件作品即可。
【详解】
115151
5=15+18
=33(件)
答:两个年级共交了33件作品。
【点睛】
本题考查分数乘法,解答本题的关键是找到六年级作品数占五年级作品数的几分之几。
40.216m
【详解】
1145(1)216(m)
54答:这条公路全长216米.
41.7500立方厘米
【分析】
这是求长方体体积的题目,240厘米是这个长方体的总棱长,长方体有4条长、4条宽、4条高,用240÷4=60(厘米),这是1条长+1条宽+1条高的和,再把60厘米进行按比分配,求出长方体的长、宽、高,再根据长方体的体积公式求出长方体的体积即可。
【详解】
240÷4=60(厘米)
60×60×60×5=25(厘米)
5433=15(厘米)
5434=20(厘米)
54325×15×20
=375×20
=7500(立方厘米)
答:这个长方体框架的体积是7500立方厘米。 【点睛】
本题考查按比分配问题,明确长、宽、高的比是5∶3∶4分配的总量指的是1条长+1条宽+1条高的和是解题的关键。
42.90千米
【分析】
根据题意可知,两车相遇时,所行路程相差80×2=160(千米),两车行驶的时间相同,所以速度比就是所行的路程之比,所以甲比乙多行全程的(95),根据分数除法的9595意义,求出全程,除以相遇时间求出速度之和,再按比例分配求出甲的速度。
【详解】
80×2÷(=160÷95)
95954
149
95=560(千米)
560÷4×=140×9
14=90(千米)
答:甲每小时行90千米。
【点睛】
此题考查了有关比的相关应用,明确两车行驶的路程之差是两个80千米,先求出总路程是解题关键。
43.24500个
【分析】
根据题目可知,当医用口罩完成了23时,防尘口罩刚好完成了,此时两种口罩生产的时57间是相同的,根据效率比等于完成的量的比,即生产医用口罩的效率∶生产防尘口罩的效率=2314∶=14∶15,即医用口罩的效率∶防尘口罩的效率=,由此可知防尘口罩的生5715产效率是医用口罩生产效率的1515,假设医用口罩生产效率为1,防尘口罩生产效率:;14143,则此时防尘口罩的2由于提高效率50%,即此时医用口罩的生产效率:1×(1+50%)=生产效率为医用口罩的医用口罩的(1-1535÷=,提高生产效率后生产的防尘口罩量是提高效率后生产71422355,即口罩总量×(1-)×,设:口罩总量为x个,列方程:x-x-x×775725)×=3500,解方程,即可解答。
75【详解】 解:设原计划生产口罩x个,由题意分析可列出方程:
x325xx(1)3500
757435xx3500
75743xx3500
771x3500
7x24500
答:原计划生产医用口罩24500个。
【点睛】
本题主要考查的是比的应用以及列方程解决实际问题,解题的关键是找出提高效率之后医用口罩生产效率和防尘口罩之间的关系,再列方程计算。
44.84千米
【分析】
两车第一次相遇后到第二次相遇,这之间一共行驶了两倍的两城市之间的距离长度,已知卡车与客车的速度比是4∶3,即路程比是4∶3,则两车的路程差是以路程差,就是两倍的城市距离,再除以2即可。
【详解】
24÷(=24÷43
,用24除434343)÷2
43431 ÷2
7=84(千米)
答:甲、乙两城相距84千米。
【点睛】
此题考查了学生对多次相遇问题的理解能力及其比的应用,关键是找出数量对应的分率。
45.20个
【分析】
甲、乙两箱球的总数不变,可以利用总数,先求出最后各自的数量,再计算甲应该拿出的数量。
【详解】
6
675015656
1330(个)
503020(个)
答:从甲箱拿出20个球放入乙箱里才使得甲、乙两箱球的数量比是6:7。 【点睛】
本题属于变比问题中的和不变,总数不变是求解本道题的关键。
46.15平方厘米
【分析】
因为D是BC的中点,所以S△ACD=2S△ABC;
1因为AE与ED的比是2∶1,所以AD∶ED=3∶1,即S△CED=S△ACD;
31111因此S△CED=S△ABC×2×=90×2×=15(平方厘米)
331【详解】
1190×2×=15(平方厘米)
3【点睛】
由题目里的中点及线段的比,再结合三角形的面积的特点,能够确定所求三角形面积与已知三角形面积的倍分关系,再依据倍分关系可计算求得阴影部分面积。
47.25人
【分析】
5由题意知,男生人数没有变,可将男生人数看作单位“1”,原来的女生人数就是男生的,6增加5名女生后,女生人数是全班的一半,也就是男女生人数相等,由此求出男生人数:55÷(1-),再根据原来男女生的人数比求出原来的女生人数。
6【详解】
555÷(1-)×
6615=5÷×
66=25(人)
答:原来参加数学竞赛的女生有25人。
【点睛】
解答此题的关键是找出男生这个量前后没有发生变化。
48.1250米
753:=25:21;
75【详解】
相同时间内:甲乙的速度比就是乙的速度就是甲的1﹣16=
772121,相同时间内,已走的路程就是甲的
252562118×=
7252550÷(1﹣=50÷=7
2518)
251250(米)
71250米.
7答:A、B两地相距49.567只
【详解】
3:4=9÷(3
443-)
453443-)
97=9÷(=9÷1
63=567(只)
答:这群鸭子有567只.
50.1米
【详解】
254.34÷3.14=81(平方米)
因为9×9=81
所以绿地的半径是9米。 <2分>
20÷2-9=1(米) <3分>
答:花圃中石子路的宽度是1米。
考察学生对圆环面积以及其内圆半径和外圆半径之间关系的理解,从而找到正确的突破口进行解答。
更多推荐
面积,图形,口罩,关键,表示,路程
发布评论