2023年12月14日发(作者:今年新高考数学试卷题)

数学物理学报2021,41A(3):723-728http:

//

act

n型椭圆系统多个非径向对称解的存在性贾小尧娄振洛*(河南科技大学数学与统计学院河南洛阳471023)摘要:该文研究如下椭圆系统—Au

+

1

u

=

—-—

xa^卩_1

v口,

x

6

Q,p

+

q<

—Av

+

口2v

=—-—

|x|aupv,

x

6

Q,p

+

q、u,

v〉0,

x

6

Q,

u

=

v

=

0,

x

6

dQ,此处Q

C

RN

(N

>

4)是一个圆环,“1,“2

>

0,

p,q

>

0且p

+

q

<书号-该文利用变分法

和伸缩技巧证明上述系统有多个非径向对称解.关键词:椭圆系统;变分法;非径向对称解.MR(2010)主题分类:35B06;

35J50;

35J57

中图分类号:0175.25

文献标识码:A文章编号:1003-3998(2021)03-723-061引言椭圆偏微分方程是偏微分方程研究的一个重要方向,解的存在性、多解性以及对称性等

是偏微分方程研究的基本问题.该文研究如下椭圆系统一+

“i

u

=-Av

+

“2

v

=p

|x|a

up-1

v

q,p

+

qq

|x|a

upvq—1,

x

e

Q,x

e

Q,x

e

dQ,(1.1)p

+

qu,

v

>

0,

x

eQ,

u

=

v

=

0,这里

Q

=

{x

e

Rn|r2

<

|x|2

<

(r

+

d)2}(N

>

4)是一个圆环,“i2

>

0,

p,q

>

0

p

+

q<

2N-2,d

>

0是一个固定的数.对系统(1.1),如果2

<

p

+

q<

NN,则系统(门)为次收稿日期:2020-05-19;修订日期:2020-10-25E-mail:

******************.cn;

********************.cn基金项目:国家自然科学基金(11571339,

11871195,

11301153)、河南科技大学博士启动基金(13480051)和河

南省高等学校重点科研项目(20B110004)Supported

by

NSFC(11571339,

11871195,

11301153),

the

Doctoral

Researcher

Fundation

ofHenan

University

of

Science

and

Technology(13480051)

and

the

Key

Scientific

Research

Projects

of

Higher

Education

Institutions

in

Henan

Province(20B

110004)*通讯作者 724数学物理学报Vol.41A临界问题,利用经典的变分法可以证明(1.1)存在一个以及多个解;如果P

+

q

=2*

:=

NN-,

系统(1.1)为临界问题,文献[1]中,Alves-de

Morais-Soutos研究了临界问题非平凡解的存

在性.事实上我们指出如果N

>

4,则2*

<爷号,此时系统(1.1)可能是超临界问题,那么

经典的临界点理论不能使用.文献[15],作者利用群临界点理论研究了椭圆方程组非径向对

称解的存在性.许多数学家研究了方程—Au

=

f

(u),

u

>

0,

x

E

Q,

u

=

0,

x

E

dQ,

(1.2)这里Q

C

RN是一个开区域•关于上述方程解的存在性、多解性以及非退化性均有不少结果.

特别指出Ni-Gidas-Nirenbergl8-0!利用移动平面法以及椭圆方程比较定理研究了方程(1.2)

解的对称性,他们证明如果非线性项f

(u)

E

C1和Q是球或者全空间解有一定衰减性时,

方程(1.2)的所有正解均是径向对称的,关于对称性方面的工作还可参见文献[2,

18,

20]及

相关文献.有研究人员指出如果椭圆方程不能用移动平面法时,则可能会得到方程的非径向

对称解.Ni在文献[16]中研究了

Henon型椭圆方程—Au

=

|x|aup,

u

>

0,

x

E

Q,

u

=

0,

x

E

dQ,

(1.3)此处a

>

0,

p>

1,

Q是原点在圆心的单位球.Ni发现加权项|x|a会得到一个关于a的新

的临界指标,另一方面它还会影响移动平面法的使用.文献[18]中,Smets-Su-Willem利用

伸缩技巧和临界点理论证明了当a

>

0足够大时,方程(1.3)存在非径向对称的基态解.如

果区域Q不是凸型区域时,即使区域是径向对称,比如环型区域,方程仍有非径向对称的

解,文献[10],

Li证明了如果环形区域半径足够大时,方程(1.2)有非径向对称解.我们指出关于椭圆系统超临界问题非径向对称解这方面的工作并不多,文献[15]研究

T

一类特殊椭圆系统的非径向对称解,本文参考上述工作得到如下结果:定理1.1令d>

0是一个常数,2

+

q<

2N-2

,n

>

4.如果r

>

10d足够大,则系

统(1.1)存在至少[N]

1个非径向对称的解.2准备知识和相关引理首先定义工作空间H

=

H0(Q)

x

H0(Q),对应范数为12附,训|Vu|2

+

”iu2

+〔▽v|2

+

p-v2其中H0(Q)为经典的Sobolev空间•定义系统(1.1)的能量泛函为I(u,

v)2

/

|Vu|2

+

Piu2

+

|Vv|2

+

P2v2dx

—1p

+

q

Jq|x|aupvq

dx,以及下面Rayleigh商R(

)

=

(L

|Vu|2

十\"1\"2

|Vv|2

“2v2dx)

F*V

jQ

|x|aupvqdx为方便定义如下集合Ak

=

{(u,v)

E

H

{(0,0)}

:

u(x)

=

u(|yi|,讷),v(x)=诃\"」讷)},No.3贾小尧等:H6non型椭圆系统多个非径向对称解的存在性725这里

y1

=

(x1,

-

-

-

,

xk

),

y2

=

(xk

+1,…,xN),

k

=

1,

2,

••-

,

[N],其中[N]为不大于

N2

的最大整

数.定义如下临界值入k

=

inf

R(u,v),

k

=

0,1,

2,

•••,[券].下面给出一个紧性结果.A*引理

2.1I10]令

Q

=

{x

e

RN

:

r2

<

|x|2

<

(r

+

d)2},

N

>

4,

1

N^

d>

0

是固

定常数.令

Ak

=

{u

e

H0(Q)

{0}

:

u(x)

=

u(|yi|,

|y2|)},

yi,y2

如上所述.则

r

>

10d

足够大

时,对任意u

e

Ak,有如下结果(JjW2dx)咪

Lup+1dx>

Cr

呼,此处C〉0是不依赖与r的常数.注2.1因为1

<

p

<

2*

<

2N—2,则Ak

j

是紧嵌入(参见文献[10]),而Ak

J

L聲3是连续的,因此对2

k

J

Lp是紧嵌入.引理

2.2[10〕假设

2

<

k

<

N

],则

A

k

n

A

k

c

A

0.由上面的引理可知如果uk

e

Ak和uk

e

Ak不是径向对称的,那么u

=如,因此我们

便得到多解的存在性.3定理1.1的证明本节分两步来证明定理1.1,首先得到如下结论:

引理3.1存在一个仅依赖于p,

q,

d的常数C〉0,使得入0

>

Cr(NT)(咪Ti.入0参见上面定义.证直接计算可得,r+d

(3.1)I

|Vu|2dx

=

|dQQ|u;|2pN-1dp

>

C(Q,d)rN

j

丿

pr+d|u;|2dp与/

u2dx

>

C(d,

Q)rN-1

Jq>r+du2dp,其中|dQ|是Q边界的面积.因此得到/

(|Vu|2

+

“iu2)dx

>

C(Q,

d)rN~f

Q

(\'

(\'r+dJr|u;|2

+

“iu2dp以及丿Q

利用Holder不等式可得/

(|Vv|2

+

“2v2)dx

>

C(Q,

d)rN-1

f

f

r+d|v;|2

+

“iv2dp.J

r/

|x|aupvqdx

=

|dQ|

/

Q

r+dJrpapN-1upvqdp<

C(Q,d)r<

C(Q,d)rp+q(3.2)726数学物理学报Vol.41A再结合Rellich嵌入不等式,可得12|u;|2

+

“iu2dp12|vP

|2

+

“2。2为方便记a

=

/■

r+d•r+dup+qdp

>

0,

bvp+qdp

>

0.J

r则我们可以得到||(u,v)||p+q

>

C(Q,d)r咪(N-1)(a晟

+

b是)咪>

C(Q,

d,p,

q)r喋(N-1)(a

+

b).结合Young不等式,则可得Pt

q

p

q

r

P

q

、/

八ap+q

bp+q

<

-------a

+----------b

<

max{-------,-------}(a

+

b).p

+

q

p

+

q

p

+

q

p

+

q(3.3)(3.4)利用(3.2)-(3.4)式,得到

Aq

>

Cr(Nt)(咪Ti,其中C

>

0为仅依赖于p,

q,

d,的常数.引理得证.

利用文献[10]中Li的想法,我们得到如下结论.

引理3.2存在常数C>0使得Ak

<

Cr(嚟-2i,I(3.5)其中

k

=

2,

••-,

[-2].证

选取一个非负函数3(x)

E

C产(B备)

{0},此处B金C

R2.令\"(|yi|

-+

d),

|y2|

—+

d)),yi,y2如前面所述.事实上如果令B(吉(r

+

d),吉(r

+

d))

e

R2,则B与原点的距离为

|B|

=

r

+

d,因此可知(u2(x),V2(x))

E

H.综上可以得到/

|Vuk|2dx

<

C

/

|V^|2tk-1sN-k-1dtds丿Q

Jr2

+

s2

W(r+d)2<

C(r

+

d)N_2

/

Jr2

+s2<(r+d)2|Vs|2dtds|Vw|2dtds<

C(d,

Q)rN—2/

Jr2

+s2<(r+d)2和|Vvk

|2dx

<

C(d,

Q)rN—2

/Jr2

+s2<(r+d)2|Ve|.3贾小尧等:Henon型椭圆系统多个非径向对称解的存在性727另_方面直接计算可得/

ufdx

=

|dQ|

/

Jq

uktk-1sN-k-1dtdsJr2

+

s2W(r+d)2<

CrN—2

/

/dtds,Jr2

+

s2

<(r+d)2以及[dx

<

CrN—2

/

/dtds./Q

Jr2

+

s2

<(r+d)2我们还有/

|x|°ukvfedx=[|x|a3p+qdx

>

CrN+a—2

/

/+qdtds.丿Q

Jr2

+

s2

<(r+d)2Jq综上可得入k

<

Cr(咪—

1)(N-2)-a.引理证毕.

I下面给出定理1.1的证明.证

利用引理2.1,可以证明入k是可达到的,然后利用伸缩技巧和临界点理论得到存

在(Uk,

%)

e

Ak为椭圆系统(1.1)的非平凡解,k

=

2,

•,

[N].利用引理3.1和3.5可知

(Uk,

%)是非径向对称的,注意到引理2.2可知系统(1.1)至少存在[N]

-

1个旋转等价的非

径向对称解.综上,完成证明.

I注

3.1

旋转等价指的是如果

yi

=

(xi,

•,

xk),

“2

= (xk

+1,…,xn)和

yi

=

(x

=

(%+i,…,xiN),这里ii,

•••

,iN是1,

•••

,N的一个变换,那么我们认为u(|yi|,

|y2|)〜

\"(〔y」讷).参考文献[1] Alves

C

O,

de

Morais

Filho

D

C,

Souto

MAS.

On

system

of elliptic

equations

involving

subcritical

or

critical

Sobolev exponents.

Nonl

Anal,

2000,

42:

771—787[2]

Bonheure

D,

dos

Santos

E

M,

Ramos

M.

Symmetry

and

symmetry

breaking

for

ground

state

solutions

of

some

strongly

coupled

systems.

J

Func

Anal,

2013,

264:

62—96[3]

Calanchi

M,

Ruf

B.

Radial

and

non-radial

solutions

for

Hardy-Henon

type

elliptic

systems.

Calc

Var,

2010,

38:

111-133[4]

Coffman

C

V.

A

nonlinear

boundary

value

problem

with

many

positive

solutions.

J

Diff

Equa,

1984,

54:

429-437[5]

Cowan

C.

Supercritical elliptic problems

on

a

perturbation

of the

ball.

J

Diff

Equa,

2014,

256:

1250-1263[6] Dancer

E

N,

Wang

K,

Zhang

Z.

The

limit

equation

for

the

Gross-Pitaevskii

equations

and

S

Terracini\'s

conjecture.

J

Func

Anal,

2012,

262:

1087-1131[7] Dancer

E

N,

Wei

J,

Weth

T.

A

priori

bounds versus

multiple

existence

of

positive

solutions

for

a

nonlinear

Schrodinger

system.

Ann

I

H

Poincar6-AN,

2010,

27:

953-969[8]

Gidas

B,

Ni

W,

Nirenberg

L.

Symmetry

and

related

properties

via

the

maximum

principle.

Comm

Math

Phys,

1979,

68:

209-243[9]

Gidas

B,

Ni

W,

Nirenberg

L.

Symmetry

of

positive

solutions

of

nonlinear elliptic

equations

in

Rn.

Adv

in

Math

Suppl

Stud,

1981,

7A:

369-402[10]

Li

Y.

Existence

of

many

positive

polutions

of

semilinear

elliptic

equations

on

annulus.

J

Diff Equa,

1990,

83:

348-367[11]

李琴,杨作东.含Caffarelli-Kohn-Nirenberg不等式和非线性边界条件的拟线性椭圆型方程组的多解性.数学物

理学报,2020,

40A(6):

1634-1645728数学物理学报Vol.41ALi

Q,

Yang

Z

D.

Multiple

positive

solutions

for

a

quasilinear

elliptic

system

involving

the

Caffarelli-Kohn-

Nirenberg

inequality

and

nonlinear

boundary

conditions.

Acta

Math

Sci,

2020,

40A(6):

1634—1645[12]

李振杰,李磊•带有凸非线性项分数阶Laplace方程的解的对称性.数学物理学报,2020,

40A(5):

1224-1234

Li

Z

J,

Li

L.

A

symmetry

result

for

solutions

of

the

fractional

Laplacian

with

convex

nonlinearites.

Acta

Math

Sci,

2020,

40A(5):

1224-1234[13]

Li

K,

Zhang

Z.

A

perturbation

result

for

system

of Schrodinger

equations

of

Bose-Einstein

condensates

in

R3.

Disc

Cont

Dyna

Syst,

2016,

36(2):

851-860[14]

Lin

S

S.

Existence

of

many

positive

nonradial

solutions

for

nonlinear

elliptic

equations

on

an

annulus.

J

Diff

Equa

1993,

103:

338-349[15]

Lou

Z.

Existence

of

non-radial

solutions

of

an

elliptic

system.

Appl

Math

Lett,

2017,

68:

157-162[16]

Ni

W.

A

nonlinear

Dirichlet

problem

on

the

unit

ball

and

its

applications.

Indiana

Univ

Math J,

1982,

31:

801-807[17]

Peng

S,

Wang

Z

Q.

Segregated

and synchronized

vector

solutions

for

nonlinear

Schrodinger

systems.

Arch

Rational

Mech

Anal,

2013,

208:

305-339[18]

Smets

D,

Su

J,

Willem

M.

Non-radial

ground

states

for

the

Henon

equation.

Comm

Cont

Math,

2002,

4:

467-480[19]

Terracini

S,

Verzini

G.

Multipulse

phases

in

k-mixtures

of

Bose-Einstein

condensates.

Arch

Rational

Mech

Anal,

2009,

194:

717-741[20]

Tavares

H,

Weth

T.

Existence

and

symmetry

results

for competing variational

systems.

NoDEA

Nonl

Diff

Equa

Appl,

2013,

20:

715-740[21]

Troy

W

C.

Symmetry

properties

in

systems

of

semilinear

elliptic

equations.

J

Diff Equa,

1981,

42:

400-413[22]

Wang

Z

Q,

Willem

M.

Partial

symmetry

of

vector

solutions

for

elliptic

systems.

J

Anal

Math,

2014,

122:

69-85[23]

Wang

K,

Zhang Z.

Some

new

results

in

competing

systems

with

many

species.

Ann

I

H

Poincare-AN,

2010,

27:

739-761[24]

Willem

M.

Minimax

Theorems.

Boston:

Birkhauser,

1996[25]

Wei

J,

Weth

T.

Radial

solutions

and

phase

separation

in

a

system

of

two coupled

Schrodinger

equations.

Arch

Rational

Mech

Anal,

2008,

190:

83-106[26]

Zhang

Z.

Variational,

Topological,

and

Partial

Order

Methods

with

Their

Applications.

New

York:

Springer,

2013Existence

of Multiple

Non-Radial

Positive

Solutions

of

a

Henon

Type

Elliptic

SystemJia

Xiaoyao

Lou

Zhenluo(Mathematics

and

Statistics

School,

Henan

University

of

Science

and

Technology,

Henan

Luoyang

471023)Abstract:

In

this

paper,

we

study

the

following

elliptic

system—Au

+

piu

=—-—

|x|aup-1vq,

x

E

Q,p

+

q<

—Av

+

p2v

=

―-—

|x|aupvq-i,

x

E

Q,p

+

qu,

v

>

0,

x

E

Q,

u

=

v

=

0,

x

E

dQ,where

Q

C

RN

is

an

annulus

N

>

4,

pi,

p2

>

0,

p,

q

>

1

and

p

+

q

<

2——.

By

variational

method

and

rescaling

method,

we

prove

that

the

system

has

many

non-radial

words:

Elliptic

system;

Variational

method;

Non-radial

(2010)

Subject

Classification:

35B06;

35J50;

35J57


更多推荐

径向,对称,椭圆