2023年12月14日发(作者:今年新高考数学试卷题)
数学物理学报2021,41A(3):723-728http:
//
act
n型椭圆系统多个非径向对称解的存在性贾小尧娄振洛*(河南科技大学数学与统计学院河南洛阳471023)摘要:该文研究如下椭圆系统—Au
+
口
1
u
=
—-—
xa^卩_1
v口,
x
6
Q,p
+
q<
—Av
+
口2v
=—-—
|x|aupv,
x
6
Q,p
+
q、u,
v〉0,
x
6
Q,
u
=
v
=
0,
x
6
dQ,此处Q
C
RN
(N
>
4)是一个圆环,“1,“2
>
0,
p,q
>
0且p
+
q
<书号-该文利用变分法
和伸缩技巧证明上述系统有多个非径向对称解.关键词:椭圆系统;变分法;非径向对称解.MR(2010)主题分类:35B06;
35J50;
35J57
中图分类号:0175.25
文献标识码:A文章编号:1003-3998(2021)03-723-061引言椭圆偏微分方程是偏微分方程研究的一个重要方向,解的存在性、多解性以及对称性等
是偏微分方程研究的基本问题.该文研究如下椭圆系统一+
“i
u
=-Av
+
“2
v
=p
|x|a
up-1
v
q,p
+
|x|a
upvq—1,
x
e
Q,x
e
Q,x
e
dQ,(1.1)p
+
qu,
v
>
0,
x
eQ,
u
=
v
=
0,这里
Q
=
{x
e
Rn|r2
<
|x|2
<
(r
+
d)2}(N
>
4)是一个圆环,“i2
>
0,
p,q
>
0
且
p
+
q<
2N-2,d
>
0是一个固定的数.对系统(1.1),如果2
<
p
+
q<
NN,则系统(门)为次收稿日期:2020-05-19;修订日期:2020-10-25E-mail:
******************.cn;
********************.cn基金项目:国家自然科学基金(11571339,
11871195,
11301153)、河南科技大学博士启动基金(13480051)和河
南省高等学校重点科研项目(20B110004)Supported
by
NSFC(11571339,
11871195,
11301153),
the
Doctoral
Researcher
Fundation
ofHenan
University
of
Science
and
Technology(13480051)
and
the
Key
Scientific
Research
Projects
of
Higher
Education
Institutions
in
Henan
Province(20B
110004)*通讯作者 724数学物理学报Vol.41A临界问题,利用经典的变分法可以证明(1.1)存在一个以及多个解;如果P
+
q
=2*
:=
NN-,
系统(1.1)为临界问题,文献[1]中,Alves-de
Morais-Soutos研究了临界问题非平凡解的存
在性.事实上我们指出如果N
>
4,则2*
<爷号,此时系统(1.1)可能是超临界问题,那么
经典的临界点理论不能使用.文献[15],作者利用群临界点理论研究了椭圆方程组非径向对
称解的存在性.许多数学家研究了方程—Au
=
f
(u),
u
>
0,
x
E
Q,
u
=
0,
x
E
dQ,
(1.2)这里Q
C
RN是一个开区域•关于上述方程解的存在性、多解性以及非退化性均有不少结果.
特别指出Ni-Gidas-Nirenbergl8-0!利用移动平面法以及椭圆方程比较定理研究了方程(1.2)
解的对称性,他们证明如果非线性项f
(u)
E
C1和Q是球或者全空间解有一定衰减性时,
方程(1.2)的所有正解均是径向对称的,关于对称性方面的工作还可参见文献[2,
18,
20]及
相关文献.有研究人员指出如果椭圆方程不能用移动平面法时,则可能会得到方程的非径向
对称解.Ni在文献[16]中研究了
Henon型椭圆方程—Au
=
|x|aup,
u
>
0,
x
E
Q,
u
=
0,
x
E
dQ,
(1.3)此处a
>
0,
p>
1,
Q是原点在圆心的单位球.Ni发现加权项|x|a会得到一个关于a的新
的临界指标,另一方面它还会影响移动平面法的使用.文献[18]中,Smets-Su-Willem利用
伸缩技巧和临界点理论证明了当a
>
0足够大时,方程(1.3)存在非径向对称的基态解.如
果区域Q不是凸型区域时,即使区域是径向对称,比如环型区域,方程仍有非径向对称的
解,文献[10],
Li证明了如果环形区域半径足够大时,方程(1.2)有非径向对称解.我们指出关于椭圆系统超临界问题非径向对称解这方面的工作并不多,文献[15]研究
T
一类特殊椭圆系统的非径向对称解,本文参考上述工作得到如下结果:定理1.1令d>
0是一个常数,2
+
q<
2N-2
,n
>
4.如果r
>
10d足够大,则系
统(1.1)存在至少[N]
—
1个非径向对称的解.2准备知识和相关引理首先定义工作空间H
=
H0(Q)
x
H0(Q),对应范数为12附,训|Vu|2
+
”iu2
+〔▽v|2
+
p-v2其中H0(Q)为经典的Sobolev空间•定义系统(1.1)的能量泛函为I(u,
v)2
/
|Vu|2
+
Piu2
+
|Vv|2
+
P2v2dx
—1p
+
q
Jq|x|aupvq
dx,以及下面Rayleigh商R(
)
=
(L
|Vu|2
十\"1\"2
十
|Vv|2
十
“2v2dx)
F*V
jQ
|x|aupvqdx为方便定义如下集合Ak
=
{(u,v)
E
H
{(0,0)}
:
u(x)
=
u(|yi|,讷),v(x)=诃\"」讷)},No.3贾小尧等:H6non型椭圆系统多个非径向对称解的存在性725这里
y1
=
(x1,
-
-
-
,
xk
),
y2
=
(xk
+1,…,xN),
k
=
1,
2,
••-
,
[N],其中[N]为不大于
N2
的最大整
数.定义如下临界值入k
=
inf
R(u,v),
k
=
0,1,
2,
•••,[券].下面给出一个紧性结果.A*引理
2.1I10]令
Q
=
{x
e
RN
:
r2
<
|x|2
<
(r
+
d)2},
N
>
4,
1
N^
且
d>
0
是固
定常数.令
Ak
=
{u
e
H0(Q)
{0}
:
u(x)
=
u(|yi|,
|y2|)},
yi,y2
如上所述.则
r
>
10d
足够大
时,对任意u
e
Ak,有如下结果(JjW2dx)咪
Lup+1dx>
Cr
呼,此处C〉0是不依赖与r的常数.注2.1因为1
<
p
<
2*
<
2N—2,则Ak
j
是紧嵌入(参见文献[10]),而Ak
J
L聲3是连续的,因此对2
k
J
Lp是紧嵌入.引理
2.2[10〕假设
2
<
k < [ N ],则 A k n A k c A 0.由上面的引理可知如果uk e Ak和uk e Ak不是径向对称的,那么u =如,因此我们 便得到多解的存在性.3定理1.1的证明本节分两步来证明定理1.1,首先得到如下结论: 引理3.1存在一个仅依赖于p, q, d的常数C〉0,使得入0 > Cr(NT)(咪Ti.入0参见上面定义.证直接计算可得,r+d (3.1)I |Vu|2dx = |dQQ|u;|2pN-1dp > C(Q,d)rN j 丿 pr+d|u;|2dp与/ u2dx > C(d, Q)rN-1 Jq>r+du2dp,其中|dQ|是Q边界的面积.因此得到/ (|Vu|2 + “iu2)dx > C(Q, d)rN~f Q (\' (\'r+dJr|u;|2 + “iu2dp以及丿Q 利用Holder不等式可得/ (|Vv|2 + “2v2)dx > C(Q, d)rN-1 f f r+d|v;|2 + “iv2dp.J r/ |x|aupvqdx = |dQ| / Q ■ r+dJrpapN-1upvqdp< C(Q,d)r< C(Q,d)rp+q(3.2)726数学物理学报Vol.41A再结合Rellich嵌入不等式,可得12|u;|2 + “iu2dp12|vP |2 + “2。2为方便记a = /■ r+d•r+dup+qdp > 0, bvp+qdp > 0.J r则我们可以得到||(u,v)||p+q > C(Q,d)r咪(N-1)(a晟 + b是)咪> C(Q, d,p, q)r喋(N-1)(a + b).结合Young不等式,则可得Pt q p q 丫 r P q 、/ 八ap+q bp+q < -------a +----------b < max{-------,-------}(a + b).p + q p + q p + q p + q(3.3)(3.4)利用(3.2)-(3.4)式,得到 Aq > Cr(Nt)(咪Ti,其中C > 0为仅依赖于p, q, d,的常数.引理得证. 利用文献[10]中Li的想法,我们得到如下结论. 引理3.2存在常数C>0使得Ak < Cr(嚟-2i,I(3.5)其中 k = 2, ••-, [-2].证 选取一个非负函数3(x) E C产(B备) {0},此处B金C R2.令\"(|yi| -+ d), |y2| —+ d)),yi,y2如前面所述.事实上如果令B(吉(r + d),吉(r + d)) e R2,则B与原点的距离为 |B| = r + d,因此可知(u2(x),V2(x)) E H.综上可以得到/ |Vuk|2dx < C / |V^|2tk-1sN-k-1dtds丿Q Jr2 + s2 W(r+d)2< C(r + d)N_2 / Jr2 +s2<(r+d)2|Vs|2dtds|Vw|2dtds< C(d, Q)rN—2/ Jr2 +s2<(r+d)2和|Vvk |2dx < C(d, Q)rN—2 /Jr2 +s2<(r+d)2|Ve|.3贾小尧等:Henon型椭圆系统多个非径向对称解的存在性727另_方面直接计算可得/ ufdx = |dQ| / Jq uktk-1sN-k-1dtdsJr2 + s2W(r+d)2< CrN—2 / /dtds,Jr2 + s2 <(r+d)2以及[dx < CrN—2 / /dtds./Q Jr2 + s2 <(r+d)2我们还有/ |x|°ukvfedx=[|x|a3p+qdx > CrN+a—2 / /+qdtds.丿Q Jr2 + s2 <(r+d)2Jq综上可得入k < Cr(咪— 1)(N-2)-a.引理证毕. I下面给出定理1.1的证明.证 利用引理2.1,可以证明入k是可达到的,然后利用伸缩技巧和临界点理论得到存 在(Uk, %) e Ak为椭圆系统(1.1)的非平凡解,k = 2, • • •, [N].利用引理3.1和3.5可知 (Uk, %)是非径向对称的,注意到引理2.2可知系统(1.1)至少存在[N] - 1个旋转等价的非 径向对称解.综上,完成证明. I注 3.1 旋转等价指的是如果 yi = (xi, • • •, xk), “2 = (xk +1,…,xn)和 yi = (x = (%+i,…,xiN),这里ii, ••• ,iN是1, ••• ,N的一个变换,那么我们认为u(|yi|, |y2|)〜 \"(〔y」讷).参考文献[1] Alves C O, de Morais Filho D C, Souto MAS. On system of elliptic equations involving subcritical or critical Sobolev exponents. Nonl Anal, 2000, 42: 771—787[2] Bonheure D, dos Santos E M, Ramos M. Symmetry and symmetry breaking for ground state solutions of some strongly coupled systems. J Func Anal, 2013, 264: 62—96[3] Calanchi M, Ruf B. Radial and non-radial solutions for Hardy-Henon type elliptic systems. Calc Var, 2010, 38: 111-133[4] Coffman C V. A nonlinear boundary value problem with many positive solutions. J Diff Equa, 1984, 54: 429-437[5] Cowan C. Supercritical elliptic problems on a perturbation of the ball. J Diff Equa, 2014, 256: 1250-1263[6] Dancer E N, Wang K, Zhang Z. The limit equation for the Gross-Pitaevskii equations and S Terracini\'s conjecture. J Func Anal, 2012, 262: 1087-1131[7] Dancer E N, Wei J, Weth T. A priori bounds versus multiple existence of positive solutions for a nonlinear Schrodinger system. Ann I H Poincar6-AN, 2010, 27: 953-969[8] Gidas B, Ni W, Nirenberg L. Symmetry and related properties via the maximum principle. Comm Math Phys, 1979, 68: 209-243[9] Gidas B, Ni W, Nirenberg L. Symmetry of positive solutions of nonlinear elliptic equations in Rn. Adv in Math Suppl Stud, 1981, 7A: 369-402[10] Li Y. Existence of many positive polutions of semilinear elliptic equations on annulus. J Diff Equa, 1990, 83: 348-367[11] 李琴,杨作东.含Caffarelli-Kohn-Nirenberg不等式和非线性边界条件的拟线性椭圆型方程组的多解性.数学物 理学报,2020, 40A(6): 1634-1645728数学物理学报Vol.41ALi Q, Yang Z D. Multiple positive solutions for a quasilinear elliptic system involving the Caffarelli-Kohn- Nirenberg inequality and nonlinear boundary conditions. Acta Math Sci, 2020, 40A(6): 1634—1645[12] 李振杰,李磊•带有凸非线性项分数阶Laplace方程的解的对称性.数学物理学报,2020, 40A(5): 1224-1234 Li Z J, Li L. A symmetry result for solutions of the fractional Laplacian with convex nonlinearites. Acta Math Sci, 2020, 40A(5): 1224-1234[13] Li K, Zhang Z. A perturbation result for system of Schrodinger equations of Bose-Einstein condensates in R3. Disc Cont Dyna Syst, 2016, 36(2): 851-860[14] Lin S S. Existence of many positive nonradial solutions for nonlinear elliptic equations on an annulus. J Diff Equa 1993, 103: 338-349[15] Lou Z. Existence of non-radial solutions of an elliptic system. Appl Math Lett, 2017, 68: 157-162[16] Ni W. A nonlinear Dirichlet problem on the unit ball and its applications. Indiana Univ Math J, 1982, 31: 801-807[17] Peng S, Wang Z Q. Segregated and synchronized vector solutions for nonlinear Schrodinger systems. Arch Rational Mech Anal, 2013, 208: 305-339[18] Smets D, Su J, Willem M. Non-radial ground states for the Henon equation. Comm Cont Math, 2002, 4: 467-480[19] Terracini S, Verzini G. Multipulse phases in k-mixtures of Bose-Einstein condensates. Arch Rational Mech Anal, 2009, 194: 717-741[20] Tavares H, Weth T. Existence and symmetry results for competing variational systems. NoDEA Nonl Diff Equa Appl, 2013, 20: 715-740[21] Troy W C. Symmetry properties in systems of semilinear elliptic equations. J Diff Equa, 1981, 42: 400-413[22] Wang Z Q, Willem M. Partial symmetry of vector solutions for elliptic systems. J Anal Math, 2014, 122: 69-85[23] Wang K, Zhang Z. Some new results in competing systems with many species. Ann I H Poincare-AN, 2010, 27: 739-761[24] Willem M. Minimax Theorems. Boston: Birkhauser, 1996[25] Wei J, Weth T. Radial solutions and phase separation in a system of two coupled Schrodinger equations. Arch Rational Mech Anal, 2008, 190: 83-106[26] Zhang Z. Variational, Topological, and Partial Order Methods with Their Applications. New York: Springer, 2013Existence of Multiple Non-Radial Positive Solutions of a Henon Type Elliptic SystemJia Xiaoyao Lou Zhenluo(Mathematics and Statistics School, Henan University of Science and Technology, Henan Luoyang 471023)Abstract: In this paper, we study the following elliptic system—Au + piu =—-— |x|aup-1vq, x E Q,p + q< —Av + p2v = ―-— |x|aupvq-i, x E Q,p + qu, v > 0, x E Q, u = v = 0, x E dQ,where Q C RN is an annulus N > 4, pi, p2 > 0, p, q > 1 and p + q < 2——. By variational method and rescaling method, we prove that the system has many non-radial words: Elliptic system; Variational method; Non-radial (2010) Subject Classification: 35B06; 35J50; 35J57
更多推荐
径向,对称,椭圆
发布评论