集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]
牛吃草问题例题
英国大数学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?
解题关键:
牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。解题环节主要有四步:
1、求出每天长草量;
2、求出牧场原有草量;
3、求出每天实际消耗原有草量(牛吃的草量--生长的草量=消耗原有草量);
4、最后求出可吃天数
想:这片草地天天以同样的速度生长是分析问题的难点。把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。求出了这个条件,把25头牛分成两部分来研究,用5头吃掉新长出的草,用20头吃掉原有的草,即可求出25头牛吃的天数。
解:新长出的草供几头牛吃1天:
(10×22-16×1O)÷(22-1O)
=(220-160)÷12
=60÷12
=5(头)
这片草供25头牛吃的天数:
(10-5)×22÷(25-5)
=5×22÷20
=5.5(天)
答:供25头牛可以吃5.5天。
----------------------------------------------------------------
“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天”
这道题太简单了,一下就可求出:3×10÷6=5(天)。如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。这类工作总量不固定(均匀变化)的问题就是牛吃草问题。
例1牧场上一片青草,每天牧草都匀速生长。这片牧草可供10头牛吃20天,或者可供15头
牛吃10天。问:可供25头牛吃几天?
分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。总草量可以分为牧场上原有的草和新生长出来的草两部分。牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量。
设1头牛一天吃的草为1份。那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。前者的总草量是200份,后者的总草量是150份,前者是原有的草加20天新长出的草,后者是原有的草加10天新长出的草。
200-150=50(份),20—10=10(天),
说明牧场10天长草50份,1天长草5份。也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草。由此得出,牧场上原有草
(l0—5)×20=100(份)或(15—5)×10=100(份)。
现在已经知道原有草100份,每天新长出草5份。当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天)。
所以,这片草地可供25头牛吃5天。
在例1的解法中要注意三点:
(1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的。
(2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量。
(3)在所求的问题中,让几头牛专吃新长出的草,其余的牛吃原有的草,根据原有的草量可以计算出能吃几天。
例2一个水池装一个进水管和三个同样的出水管。先打开进水管,等水池存了一些水后,再打开出水管。如果同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,那么5分钟后水池空。那么出水管比进水管晚开多少分钟?
分析:虽然表面上没有“牛吃草”,但因为总的水量在均匀变化,“水”相当于“草”
进水管进的水相当于新长出的草,出水管排的水相当于牛在吃草,所以也是牛吃草问题,解法自然也与例1相似。
出水管所排出的水可以分为两部分:一部分是出水管打开之前原有的水量,另一部分是开始排水至排空这段时间内进水管放进的水。因为原有的水量是不变的,所以可以从比较两次排水所用的时间及排水量入手解决问题。
更多推荐
原有,草量,头牛,牧场,生长,问题
发布评论