小学数学抽屉原理题型训练例题+练习+作业带详细答案
抽屉问题题型训练
【例题1】、在一只口袋中有红色、黄色、蓝色球若干个,小聪明和其他六个小朋友一起做游戏,每人可以从口袋中随意取出2个球,那么不管怎样挑选,总有两个小朋友取出的两个球的颜色完全一样.你能说明这是为什么吗?
从三种颜色的球中挑选两个球,可能情况只有下面6种:
红、红;黄、黄;蓝、蓝;红、黄;红、蓝;黄、蓝,
我们把6种搭配方式当作6个“抽屉”,把7个小朋友当作个“苹果”,根据抽屉原理,至少有两个“苹果”要放进一个“抽屉”中,也就是说,至少有两个人挑选的颜色完全一样.
【巩固】在一只口袋中有红色与黄色球各4只,现有4个小朋友,每人从口袋中任意取出2个小球,请你证明:必有两个小朋友,他们取出的两个球的颜色完全一样.
小朋友从口袋中取出的两个球的颜色的组成只有以下3种可能:红红、黄黄、红黄,把这3种
情况看作3个“抽屉”,把4位小朋友看作4只“苹果”,根据抽屉原理,必有两个小朋友取出的两个球的颜色完全一样.
【例题2】学校里买来数学、英语两类课外读物若干本,规定每位同学可以借阅其中两本,现有4位小朋友前来借阅,每人都借了2本.请问,你能保证,他们之中至少有两人借阅的图书属于同一种吗?
每个小朋友都借2本有三种可能:数数,英英,数英.第4个小朋友无论借什么书,都可能是这三种情况中的一种,这样就有两个同学借的是同一类书,所以可以保证,至少有2位小朋友,他们所借阅的两本书属于同类.
总结:此题如用简单乘法原理的话,有难度,因为涉及到简单加法原理,所以推荐使用列表法。与之前不同的是,本题借阅的书只说了两本并没说其他要求,所以可以拿2本同样的书.
【巩固】11名学生到老师家借书,老师的书房中有文学、科技、天文、历史四类书,每名学生最多可借两本不同类的书,最少借一本.试说明:必有两个学生所借的书的类型相同
设不同的类型书为A、B、C、D四种,若学生只借一本书,则不同的类型有A、B、C、D四种;若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种.共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”.如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同.
【例题3】体育用品的仓库里有许多足球、排球和篮球,有66个同学来仓库拿球,要求每个人至少拿一个,最多拿两个球,问至少有多少名同学所拿的球的种类是完全一样的?
以拿球配组的方式为抽屉,每人拿一个或两个球,所以抽屉有:足、排、篮、足足、排排、篮篮、足排、足篮、排篮共9种情况,即有9个抽屉,则:66÷3,7+1=8,即至少有8名同学所拿球的种类是一样的.
【巩固】幼儿园买来很多玩具小汽车、小火车、小飞机,每个小朋友任意选择两件不同的,那么至少要有几个小朋友才能保证有两人选的玩具是相同的?
根据题意列下表:
有3个小朋友就有三种不同的选择方法,当第四个小朋友准备拿时,不管他怎么选择都可以跟前面三个同学其中的一个选法相同.所以至少要有4个小朋友才能保证有两人选的玩具是相同的.
【例题4】红、蓝两种颜色将一个2×5方格图中的小方格随意涂色(见下图),每个小方格涂一种颜色.是否存在两列,它们的小方格中涂的颜色完全相同?
第二行
第一行
第五列第四列第三列第
第一列
用红、蓝两种颜色给每列中两个小方格随意涂色,只有下面四种情形:
蓝蓝红蓝蓝红红
将上面的四种情形看成四个“抽屉”,把五列方格看成五个“苹果”,根据抽屉原理,将五个苹果放入四个抽屉,至少有一个抽屉中有不少于两个苹果,也就是至少有一种情形占据两列方格,即这两列的小方格中涂的颜色完全相同.
【巩固】将每一个小方格涂上红色、黄色或蓝色.(每一列的三小格涂的颜色不相同),不论如何涂色,其中至少有两列,它们的涂色方式相同,你同意吗?
这道题是例题的拓展提高,通过列举我们发现给这些方格涂色,要使每列的颜色不同,最
多有6种不同的涂法,
蓝黄红蓝黄红蓝黄红蓝黄红蓝黄红红
黄蓝
涂到第六列以后,就会跟前面的重复.所以不论如何涂色,其中至少有两列它们的涂色方式相同.
【例题5】从2、4、6、8......50这25个偶数中至少任意取出多少个数,才能保证有2个数的和是52? 构造抽屉:(2,50),(4,48),(6,46),(8,44),...,(24,28),(26),共13种搭配,即13个抽屉,所以任意取出14个数,无论怎样取,有两个数必同在一个抽屉里,这两数和为52,所以应取出14个数.或者从小数入手考虑,2、4、6......26,当再取28时,与其中的一个去陪,总能找到一个数使这两个数之和为52.
【巩固】证明:在从1开始的前10个奇数中任取6个,一定有2个数的和是20.
将10个奇数分为五组(1、19),(3、17),(5、15),(7、13),(9、11),任取6个必有两个奇数在同一组中,这两个数的和为20.
【例题6】从1,2,3,4,...100这100个数中任意挑出51个数来,证明在这51个数中,一定有两个数的差为50。
将100个数分成50组:(1,51),(2,52),(3.53),.....,(50,100),将其看作50个抽屉,在选出的51个数中,必有两个属于一组,这一组的差为50.这道题也同样可以从小数入手考虑.
【巩固】请证明:在1,4,7,10,…,100中任选20个数,其中至少有不同的两组数其和都等于104.
1,4,7,10,…,100共有34个数,将其分为(4,100),(7,97),…,(49,55),(1),(52),共有18个抽屉.从这18个抽屉里面任意抽取20个数,则至少有18个数取自前16个抽屉,所以至少有4个数取自某两个抽屉中,而属于同一“抽屉”的两个数,其和是104.
【例题7】从1,2,3,4,…,1988,1989这些自然数中,最多可以取____个数,其中每两个数的差不等于4.
将1~1989排成四个数列:
1,5,9,…,1985,1989
2,6,10,…,1986
3,7,11,…,1987
4,8,12,…,1988
每个数列相邻两项的差是4,因此,要使取出的数中,每两个的差不等于4,每个数列中不能取相邻的项.因此,第一个数列只能取出一半,因为有(1989-1)÷4+1=498项,所以最多取出249项,例如1,9,17,…,1985.同样,后三个数列每个最多可取249项.因而最多取出249×4=996个数,其中每两个的差不等于4.
【巩固】从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34.
我们用题目中的15个偶数制造8个抽屉,(2),(4,30),(6,28),…,(16,18),凡是抽屉中的有两个数,都具有一个共同的特点:这两个数的和是34.
现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数在同一个抽屉中.由制造的抽屉的特点,这两个数的和是34.
【例题8】从1,2,3,4,5,6,7,8,9,10,11,12中至多选出个数,使得在选出的数中,每一个数都不是另一个数的2倍.
把这12个数分成6个组:
第1组:1,2,4,8
第2组:3,6,12
第3组:5,10
第4组:7
第5组:9
第6组:11
每组中相邻两数都是2倍关系,不同组中没有2倍关系.
选没有2倍关系的数,第1组最多2个(1,4或2,8或1,8),第2组最多2个(3,12),第3组只有1个,第4,5,6组都可以取,一共2+2+1+1+1+1=8个.
如果任意取9个数,因为第3,4,5,6组一共5个数中,最多能取4个数,剩下9-4=5个数在2个组中,根据抽屉原理,至少有3个数是同一组的,必有2个数是同组相邻的数,是2倍关系.
【巩固】从1到20这20个数中,任取11个不同的数,必有两个数其中一个是另一个数的倍数.
把这20个数分成以下10组,看成10个抽屉:(1,2,4,8,16),(3,6,12),(5,10,20),(7,14),(9,18),(11),(13),(15),(17),(19),前5个抽屉中,任意两个数都有倍数关系.从这10个抽屉中任选11个数,必有一个抽屉中要取2个数,它们只能从前5个抽屉中取出,这两个数就满足题目要求.
【例题9】从1,2,3,…,99,100这100个数中任意选出51个数.证明:(1)在这51个数
中,一定有两个数互质;(2)在这51个数中,一定有两个数的差等于50;(3)在这51个数中,一定存在9个数,它
们的最大公约数大于1.
(1)我们将1~100分成(1,2),(3,4),(5,6),(7,8),…,(99,100)这50组,每组内的数相邻.而相邻的两个自然数互质.将这50组数作为50个抽屉,同一个抽屉内的两个数互质.而现在51个数,放进50个抽屉,则必定有两个数在同一抽屉,于是这两个数互质.问题得证.

更多推荐

抽屉,个数,小朋友,原理,取出,任意,方格