2024年5月28日发(作者:)
开题报告可以抄袭吗
开题报告可以抄袭吗
开题报告可以抄袭吗,这是很多人想知道的问题,以下的开题报告可以抄袭吗相关文
章,请往下阅读:
开题报告可以抄袭吗【1】
很少有人会原创一份开题报告,简言之,我觉得写好一篇开题报告比写好一篇论文都
难。
因为开题报告涉及一些写作背景、缘由之类的,这种东西你不好好查资料,是行不通
的。
因此,也就有不少人偷工减料了,直接借鉴别人的。
抄袭不抄袭,关键还是看你们学校了,至少我们学校没那精力去检测开题报告的抄袭
率。
倘若开题报告还过机检,那肯定要控制抄袭率。
当然,要是开题报告只是个形式的话,那么形式就大于内容了,只要你借鉴的能够充
分证明的你的论题,那么还是要多多借鉴为妙。
开题报告【2】
1题目:皮格马利翁效应在教学管理中的应用研究
2选题目的和意义:(1)目的:在大力提倡新课程改革,呼唤创新学习与生成性学习的
今天,如何在教学中保证学生的学习质量,锻炼学习能力及心理素质是一个很有现实意义
的话题。
在学习过程中,让学生好学乐学自觉学,是课改的一个发展趋向,如何在繁重的学习
中让学生始终保持高涨的热情与兴趣,让他们不断体验超越与成功?不仅是调动学习热情
的一个有效手段,也是培养学生的自信心与创造性思维的有效手段,在这一个时践环节
中,皮格马利翁效应是经过时间检验的最实用的教育手段。
因此,我们有必要对此做一个系统的学习与探索。
(2)意义:研究皮格马利翁效应的应用,有助于推进以人为本的教改理念,有利于在
好学乐学的氛围中调动学生的学习积极性,培养他们正确的人生观与价值观。
健康的学习心理的形成是学生成人成材的基础。
在此前提下,才能保证教改的各项措施落实并顺利实行,因此我们必须以“以人为
本”的理念为指导,在关注欣赏中塑造学生的灵魂,使其在愉快学习中成长为有用之才。
3国内外研究现状评述
自1968年发现和提出“皮格马利翁效应”以来,情感运用于教学在国外以被广泛接
受并应用于教学实践。
如林格伦等依赖情感信息沟通的理论提出了最佳的多项沟通模式。
赞可夫、苏霍姆林斯基等都十分重视课堂上的精神生活与情感投入,强调情感的教育
作用。
我国因为长期受传统思想影响一贯重视知识传输,情感教育尚处于起步阶段,但随着
新课改的逐步推广,越来越多的教育者在引导学生进行学习的过程中体验到了情感在教学
中的重要作用并有意识的加以运用,随着平等、尊重、欣赏等教育理念的推广,“皮格马
利翁效应”作为一种最效的情感教育模式得到深入广泛应用的时日也必为期不远。
4研究的主要内容:(1)“皮格马利翁效应”的起源、在教育实践中的具体形式、实施
原则与教学实践中应注意的问题
(2)通过具体教学个案,说明教学过程中教师期望与学生成绩的关系
(3)如何在实践中避免应用失误
5主要观点:(1)“皮格马利翁效应”本质上是一种赏识教育,但是运用不当也会有负
面效应。
(2)对学生的赏识必须事实求是,有原则有依据。
(3)要使学生接受教师的感情投入,教师必须培养自己的人格魅力
6研究方法和途径:文献索引,广泛搜集国内外研究成果与最新信息,积累文章素材
(2)个案调查,通过分析具体事例说明教师情感与希望对学生的影响。
7研究进度:1-4周查找材料
5-13周完成开题报告
14周完成初稿交指导教师审阅
17周完成3稿打印。
论文提纲
引言
正文
一、“皮格马利翁效应”的应用形式
1暗示
2感染
3激励
二应用原则
1真诚关爱
2适当运用不同的激励形式
3培养自己的人格魅力
三“皮格马利翁效应”的应用过程中应该注意的问题
1有理有据,不滥用感情
2社会家庭与学校密切配合净化学生的生活与学习环境
四 小结
开题报告范文【3】
一、论文名称、课题来源、选题依据
论文名称:基于BP神经网络的技术创新预测与评估模型及其应用研究
课题来源:单位自拟课题或省政府下达的研究课题
选题依据:
技术创新预测和评估是企业技术创新决策的前提和依据。
通过技术创新预测和评估, 可以使企业对未来的技术发展水平及其变化趋势有正确的
把握, 从而为企业的技术创新决策提供科学的依据, 以减少技术创新决策过程中的主观性和
盲目性。
只有在正确把握技术创新发展方向的前提下, 企业的技术创新工作才能沿着正确方向
开展,企业产品的市场竞争力才能得到不断加强。
在市场竞争日趋激烈的现代商业中, 企业的技术创新决定着企业生存和发展、前途与
命运, 为了确保技术创新工作的正确性,企业对技术创新的预测和评估提出了更高的要求。
二、本课题国内外研究现状及发展趋势
现有的技术创新预测方法可分为趋势外推法、相关分析法和专家预测法三大类。
(1)趋势外推法。
指利用过去和现在的技术、经济信息, 分析技术发展趋势和规律, 在分析判断这些趋势
和规律将继续的前提下, 将过去和现在的趋势向未来推演。
生长曲线法是趋势外推法中的一种应用较为广泛的技术创新预测方法,美国生物学家
和人口统计学家Raymond Pearl提出的Pearl曲线(数学模型为: Y=L?M[1+A?exp(-
B·t)] )及英国数学家和统计学家Gompertz提出的Gompertz曲线(数学模型为:
Y=L·exp(-B·t))皆属于生长曲线, 其预测值Y为技术性能指标, t为时间自变量, L、A、B皆
为常数。
Ridenour模型也属于生长曲线预测法, 但它假定新技术的成长速度与熟悉该项技术的
人数成正比, 主要适用于新技术、新产品的扩散预测。
(2)相关分析法。
利用一系列条件、参数、因果关系数据和其他信息, 建立预测对象与影响因素的因果
关系模型, 预测技术的发展变化。
相关分析法认为, 一种技术性能的改进或其应用的扩展是和其他一些已知因素高度相
关的, 这样, 通过已知因素的分析就可以对该项技术进行预测。
相关分析法主要有以下几种: 导前-滞后相关分析、技术进步与经验积累的相关分析、
技术信息与人员数等因素的相关分析及目标与手段的相关分析等方法。
(3)专家预测法。
以专家意见作为信息来源, 通过系统的调查、征询专家的意见, 分析和整理出预测结
果。
专家预测法主要有: 专家个人判断法、专家会议法、头脑风暴法及德尔菲法等, 其中,
德尔菲法吸收了前几种专家预测法的长处, 避免了其缺点, 被认为是技术预测中最有效的专
家预测法。
趋势外推法的预测数据只能为纵向数据, 在进行产品技术创新预测时, 只能利用过去的
产品技术性能这一个指标来预测它的随时间的发展趋势, 并不涉及影响产品技术创新的科
技、经济、产业、市场、社会及政策等多方面因素。
在现代商业经济中, 对于产品技术发展的预测不能简单地归结为产品过去技术性能指
标按时间的进展来类推, 而应系统综合地考虑现代商业中其他因素对企业产品技术创新的
深刻影响。
相关分析法尽管可同时按横向数据和纵向数据来进行预测, 但由于它是利用过去的历
史数据中的某些影响产品技术创新的因素求出的具体的回归预测式, 而所得到的回归预测
模型往往只能考虑少数几种主要影响因素, 略去了许多未考虑的因素, 所以, 所建模型对实
际问题的表达能力也不够准确, 预测结果与实际的符合程度也有较大偏差。
专家预测法是一种定性预测方法,依靠的是预测者的知识和经验, 往往带有主观性, 难
以满足企业对技术创新预测准确度的要求。
以上这些技术创新预测技术和方法为企业技术创新工作的开展做出了很大的贡献, 为
企业技术创新的预测提供了科学的方法论, 但在新的经济和市场环境下, 技术创新预测的方
法和技术应有新的丰富和发展, 以克服自身的不足, 更进一步适应时代发展的需要, 为企业
的技术创新工作的开展和企业的生存与发展提供先进的基础理论和技术方法。
目前,在我国企业技术创新评估中, 一般只考虑如下四个方面的因素: (1) 技术的先进
性、可行性、连续性; (2) 经济效果; (3) 社会效果; (4) 风险性, 在对此四方面内容逐个分析
后, 再作综合评估。
在综合评估中所用的方法主要有: Delphi法(专家法)、AHP法(层次分析法)、模糊评
估法、决策树法、战略方法及各种图例法等, 但技术创新的评估是一个非常复杂的系统, 其
中存在着广泛的非线性、时变性和不确定性, 同时, 还涉及技术、经济、管理、社会等诸多
复杂因素,目前所使用的原理和方法, 难以满足企业对技术创新评估科学性的要求。
关于技术创新评估的研究, 在我国的历史还不长, 无论是指标体系还是评估方法, 均处
于研究之中, 我们认为目前在企业技术创新评估方面应做的工作是: (1) 建立一套符合我国
实际情况的技术创新评估指标体系; (2) 建立一种适应于多因素、非线性和不确定性的综合
评估方法。
这种情况下, 神经网络技术就有其特有的优势, 以其并行分布、自组织、自适应、自学
习和容错性等优良性能, 可以较好地适应技术创新预测和评估这类多因素、不确定性和非
线性问题, 它能克服上述各方法的不足。
本项目以BP神经网络作为基于多因素的技术创新预测和评估模型构建的基础, BP神
经网络由输入层、隐含层和输出层构成, 各层的神经元数目不同, 由正向传播和反向传播组
成, 在进行产品技术创新预测和评估时, 从输入层输入影响产品技术创新预测值和评估值的
n个因素信息, 经隐含层处理后传入输出层, 其输出值Y即为产品技术创新技术性能指标的
预测值或产品技术创新的评估值。
这种n个因素指标的设置, 考虑了概括性和动态性, 力求全面、客观地反映影响产品
技术创新发展的主要因素和导致产品个体差异的主要因素, 尽管是黑匣子式的预测和评估,
但事实证明它自身的强大学习能力可将需考虑的多种因素的数据进行融合, 输出一个经非
线性变换后较为精确的预测值和评估值。
据文献查阅, 虽然在技术创新预测和评估的现有原理和方法的改进和完善方面有一定
的研究,如文献[08]、[09]、[11]等, 但尚未发现将神经网络应用于技术创新预测与评估方
面的研究, 在当前产品的市场寿命周期不断缩短、要求企业不断推出新产品的经济条件下,
以神经网络为基础来建立产品技术创新预测与评估模型, 是对技术创新定量预测和评估方
法的有益补充和完善。
三、论文预期成果的理论意义和应用价值
本项目研究的理论意义表现在: (1) 探索新的技术创新预测和评估技术, 丰富和完善技
术创新预测和评估方法体系; (2) 将神经网络技术引入技术创新的.预测和评估, 有利于推动
技术创新预测和评估方法的发展。
本项目研究的应用价值体现在: (1) 提供一种基于多因素的技术创新定量预测技术, 有
利于提高预测的正确性; (2)提供一种基于BP神经网络的综合评估方法, 有利于提高评估的
科学性; (3) 为企业的技术创新预测和评估工作提供新的方法论和实用技术。
四、课题研究的主要内容
研究目标:
以BP神经网络模型为基础研究基于多因素的技术创新预测和评估模型, 并建立科学
的预测和评估指标体系及设计相应的模型计算方法, 结合企业的具体实际, 对指标和模型体
系进行实证分析, 使研究具有一定的理论水平和实用价值。
研究内容:
1、影响企业技术创新预测和评佑的相关指标体系确定及其量化和规范化。
从企业的宏观环境和微观环境两个方面入手, 密切结合电子商务和知识经济对企业技
术创新的影响, 系统综合地分析影响产品技术创新的各相关因素, 建立科学的企业技术创新
预测和评估指标体系, 并研究其量化和规范化的原则及方法。
更多推荐
预测,评估,技术,企业,产品
发布评论