2024年3月12日发(作者:深圳中考数学试卷2017)

上海沪教版六年级数学下知识点总结

第五章 有理数

5.1有理数的意义

整数和分数统称为有理数

有理数 整数:正整数、零、负整数

分数:正分数、负分数

5.2正数和负数

数轴:规定了原点、正方向和单位长度的直线叫数轴。

数轴的三要素:原点、单位长度、正方向。

所有的数都可以用数轴上的点来表示。也可以用数轴来比较两个数的大小

在数轴上表示的两个数,正方向的数大于负方向的数

零是正数和负数的分界。

只有符号不同的两个数,我们称其中一个数为另一个数的相反数,也称为这两个数互为相反

数,零的相反数是零。

一个数在数轴上所对应的点与原点的距离,叫做这个数的绝对值

注意:

1、一个正数的绝对值是它本身。

2、一个负数的绝对值是它的相反数。

3、零的绝对值是零。

4、两个负数,绝对值大的那个数反而小。

5.3有理数的加减

有理数加法法则:

1、同号两数相加,取原来的符号,并把绝对值相加。

2、异号两数相加,绝对值相等时和为零,绝对值不相等时,其和的绝对值为较大绝对

值减去较小的绝对值所得的差,其和的符号取绝对值较大的加数的符号。

3、一个数同零相加,仍得这个数。

有理数加法的运算律

1、交换律:a+b=b+a

2、结合律:(a+b)+ c=a+(b+c)

有理数的减法法则

1、减去一个数,等于加上这个数的相反数

2、a-b=a+(-b)

1

5.4有理数的乘除

两数相乘的符号法则

正正得正,正负得负,负正得负,负负得正。

有理数的乘法法则

1、两数相乘,同号得正,异号得负,并把绝对值相乘。

2、任何数与零相乘,都得零。

注意连成的符号:

1、几个不等于零的数相乘,积的符号由负因数的个数决定

2、当负因数有奇数个时,积为负

3、当负因数有偶数个时,积为正

4、几个数相乘,有因数为零,积就为零

有理数除法法则

1、两数相除,同号得正,异号得负,并把绝对值相除。

2、零除以任何一个不为零的数,都得零。

5.5有理数的乘方

求N个相同因数的积的运算,叫做乘方。乘法的结果叫做幂。在a

n

中,a叫做底数,n叫做

指数,读作a的n次方,a

n

看做是a的n次方结果时,读作a的n次幂。

注意:

1、正数的任何次幂都是正数,负数的奇数次幂是负数,负数的偶数次幂是正数。

2、有理数混合运算的顺序:先乘方,后乘除,再加减;统计运算从左到右;如果有括号,

先算小括号,后算中括号,再算大括号。

3、 把一个数写成a*10

n

(其中1≤a<10,n是正整数,这种形式的计数方法叫做科学计数法

2


更多推荐

叫做,数轴,运算