2024年3月24日发(作者:赣州二模理科数学试卷分析)
八年级《一次函数》教学设计(5篇)
八年级《一次函数》教学设计 篇一
教学目标:
(知识与技能,过程与方法,情感态度价值观)
(一)教学知识点
1、一元一次不等式与一次函数的关系、
2、会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较、
(二)能力训练要求
1、通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识、
2、训练大家能利用数学知识去解决实际问题的能力、
(三)情感与价值观要求
体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的
重要工具,了解数学对促进社会进步和发展人类理性精神的作用、
教学重点
了解一元一次不等式与一次函数之间的关系、
教学难点
自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答、
教学过程
创设情境,导入课题,展示教学目标
1、张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷
介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,
然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。你能帮
帮张大爷选择一种电话卡吗?
2、展示学习目标:
(1)、理解一次函数图象与一元一次不等式的关系。
(2)、能够用图像法解一元一次不等式。
(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。
积极思考,尝试回答问题,导出本节课题。
阅读学习目标,明确探究方向。
从生活实例出发,引起学生的好奇心,激发学生学习兴趣
学生自主研学
指出探究方向,巡回指导学生,答疑解惑
探究一:一元一次不等式与一次函数的关系。
问题1:结合函数y=2x-5的图象,观察图象回答下列问题:
(1) x取何值时,2x-5=0?
(2) x取哪些值时, 2x-50?
(3) x取哪些值时, 2x-50?
(4) x取哪些值时, 2x-53?
问题2:如果y=-2x-5,那么当x取何值时,y>0 ? 当x取何值时,y1 ?
你是怎样求解的?与同伴交流
让每个学生都投入到探究中来养成自主学习习惯
小组合作互学
巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。答疑展示中存在的
问题。
探究二:一元一次不等式与一次函数关系的简单应用。
问题3、兄弟俩赛跑,哥哥先让弟弟跑9 m,然后自己才开始跑,已知弟弟每秒跑3 m,
哥哥每秒跑4 m,列出函数关系式,画出函数图象,观察图象回答下列问题:
(1)何时哥哥分追上弟弟?
(2)何时弟弟跑在哥哥前面?
(3)何时哥哥跑在弟弟前面?
(4)谁先跑过20 m?谁先跑过100 m?
你是怎样求解的?与同伴交流。
问题4:已知y1=-x+3,y2=3x-4,当x取何值时,y1>y2?你是怎样做的?与同伴交流、
让学生体会数形结合的魅力所在。理解函数和不等式的联系。
精讲点拨
移动通讯公司开设了两种长途通讯业务:全球通使用者先缴50元基础费,然后每通话
1分钟付话费0、4元;神州行不交月基础费,每通话1分钟付话费0、6元。若设一个月内
通话x分钟,两种通讯方式的费用分别为y1元和y2元,那么 (1)写出y1、y2与x之间
的函数关系式; (2)在同一直角坐标系中画出两函数的图象;(3)求出或寻求出一个月内
通话多少分钟,两种通讯方式费用相同; (4)若某人预计一个月内使用话费200元,应选
择哪种通讯方式较合算?
在共同探究的过程中加强理解,体会数学在生活中的重大应用,进行能力提升。
提高学生应用数学知识解决实际问题的能力
达标检测
展示检测内容
积极完成导学案上的检测内容,相互点评。
反馈学生学习效果
知识与收获
引导学生归纳探究内容
学生回顾总结学习收获,交流学习心得。
学会归纳与总结
布置作业
教材P51、习题2、6知识技能1;问题解决2,3、
板书设计
§2、5 一元一次不等式与一次函数(一)
一、学习与探究:
1、一元一次不等式与一次函数之间的关系;
2、做一做(根据函数图象求不等式);
3、试一试(当x取何值时,y>0);
4、议一议
二、精讲点拨:
三、知识与收获:
四、课后作业:
八年级《一次函数》教学设计 篇二
一、教学目标知识与技能目标。
1、能熟练作出一次函数的图像,掌握一次函数及其图像的简单性质;
更多推荐
学生,问题,函数,探究
发布评论