2024年3月14日发(作者:eva数学试卷)

北师大版小学数学五年级(上册)知识点

一单元《倍数与因数》 数的世界

知识点:

1、 认识自然数和整数,联系乘法认识倍数与因数。

像0,1,2,3,4,5,6,…这样的数是自然数。

像-3,-2,-1,0,1,2,3,…这样的数是整数。

2、

3、

我们只在自然数(零除外)范围内研究倍数和因数。

倍数与因数是相互依存的关系,要说清谁是谁的倍数,谁是谁的因数。

补充知识点:

一个数的倍数的个数是无限的。

探索活动(一)2,5的倍数的特征

知识点:

1、 2的倍数的特征。

个位上是0,2,4,6,8的数是2的倍数。

2、 5的倍数的特征。

个位上是0或5的数是5的倍数。

3、 偶数和奇数的定义。

是2的倍数的数叫偶数,不是2的倍数的数叫奇数。

4、 能判断一个数是不是2或5的倍数。能判断一个非零自然数是奇数或偶数。

补充知识点:

既是2的倍数,又是5的倍数的特征。个位上是0的数既是2的倍数,又是5

的倍数。

探索活动(二)3的倍数的特征

知识点:

1、 3的倍数的特征。

一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。

2、 能判断一个数是不是3的倍数。

补充知识点:

1、 同时是2和3的倍数的特征。

个位上的数是0,2,4,6,8,并且各个数位上的数字的和是3的倍数的数,既

是2的倍数,又是3的倍数。

2、 同时是3和5的倍数的特征。

个位上的数是0或5,并且各个数位上的数字的和是3的倍数的数,既是3的倍

数,又是5的倍数。

3、 同时是2,3和5的倍数的特征。

个位上的数是0,并且各个数位上的数字的和是3的倍数的数,既是2和5的倍

数,又是3的倍数。

找因数

知识点:

在1~100的自然数中,找出某个自然数的所有因数。方法:运用乘法算式,思考:

哪两个数相乘等于这个自然数。

补充知识点:

一个数的因数的个数是有限的。其中最小的因数是1,最大的因数是它本身。

找质数

知识点:

1、 理解质数与合数的意义。

一个数只有1和它本身两个因数,这个数叫作质数。

一个数除了1和它本身以外还有别的因数,这个数叫作合数。

2、

3、

1既不是质数也不是合数。

判断一个数是质数还是合数的方法:

一般来说,首先可以用“2,5,3的倍数的特征”判断这个数是否有因数2,5,

3;如果还无法判断,则可以用7,11等比较小的质数去试除,看有没有因数7,11

等。只要找到一个1和它本身以外的因数,就能肯定这个数是合数。如果除了1和它

本身找不到其他因数,这个数就是质数。

数的奇偶性

知识点:

1、 运用“列表”“画示意图”等方法发现规律:

小船最初在南岸,从南岸驶向北岸,再从北岸驶回南岸,不断往返。通过“列表”

“画示意图”的方法会发现“奇数次在北岸,偶数次在南岸”的规律。

2、

3、

能够运用上面发现的数的奇偶性解决生活中的一些简单问题。

通过计算发现奇数、偶数相加奇偶性变化的规律:

偶数+偶数=偶数 奇数+奇数=偶数

偶数+奇数=奇数

二单元《图形的面积(一)》

比较图形的面积

知识点:

1、

2、

借助方格纸,能直接判断图形面积的大小。

平面图形面积大小的比较有多种方法:

根据图形面积的大小,可以直接进行比较;可以借助参照物进行比较;可以运用重

叠的方法进行比较;借助方格,利用数方格的的方法进行比较;直接计算面积后再进行

比较等。

3、 图形面积相同,其形状可以是不同的。

补充知识点:

确定一个图形面积的大小,不仅是根据图形的形状,更重要的是根据图形所占格子

的多少来确定。

地毯上的图形面积

知识点:

根据地毯上所给图案探求不规则图案面积的计算方法。

1、

2、

直接通过数方格的方法,得出答案的面积。

将图案进行“化整为零”式的计算,即根据图案的特点,将整体的图案分割为若

干个相同面积的小图案,通过求小图案的面积,得出整个图案的面积。

3、 采用“大面积减小面积”的方法,即通过计算相关图形的面积,得到所求的面积。

补充知识点:

在解决问题时,策略和方法是多种多样的。

动手做

知识点:

1、 认识平行四边形、三角形与梯形的底和高。

从平行四边形一边的某一点到对边画垂直线段,这条垂直线段就是平行四边形的

高,这条对边是平行四边形的底。

三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。

从梯形的两条平行线中的一条上的某一点到对边画垂直线段,这条垂直线段就是梯

形的高,这条对边就是梯形的底。

2、 高和底的关系是对应的。

3、 用三角板画出平行四边形的高的方法。

1) 把三角板的一条直角边与平行四边形的一条边重合,让三角板的另一条直角边

过对边的某一点。

2) 从这一点沿着三角板的另一条直角边向它的对边画垂线,这条垂线(从点到垂

足)就是平行四边形一条边上的高。注意:从一条边上的任意一点可以向它的

对边画高,也可以从另一条边上的任意一点向它的对边画高,但把高画在底边

延长线上在小学阶段不要求。

4、 用三角板画出三角形的高的方法。

1) 把三角板的一条直角边对准三角形的一个顶点,另一条直角边与这个顶点的对

边重合。

2) 从这个顶点沿着三角板的另一条直角边向它的对边画垂线,这条垂线(从顶点

到垂足)就是三角形形一条边上的高。

5、 用三角板画梯形的高的方法。

用同样的方法,画出梯形两条平行线之间的垂直线段,就是梯形的高。

探索活动(一)平行四边形的面积

知识点:

1、 平行四边形的面积=拼成的长方形的面积

长方形的长就是平行四边形的底;长方形的宽就是平行四边形的高。

因此:平行四边形面积=底×高

如果用S表示平行四边形的面积,用a和h分别表示平行四边形的底和高,那么,

平行四边形的面积公式可以写成:

S=ah

2、 运用平行四边形的面积计算公式计算相关图形的面积并解决一些实际问题。

补充知识点:

当平行四边形的底和高相同时,其面积也是相同的。

探索活动(二)三角形的面积

知识点:

1、 三角形面积=两个相同三角形拼成的平行四边形的面积÷2

三角形的底和高,也就是平行四边形的底和高。

因此:三角形面积=平行四边形的面积÷2=底×高÷2

如果用S表示三角形的面积,用a和h分别表示三角形的底和高,那么,三角形

的面积公式可以写成:

S=ah÷2或S =

2、

1

ah

2

运用三角形的面积公式,计算相关图形的面积,解决实际问题。

补充知识点:

决定三角形面积的大小的因素不是图形的形状,而是三角形的底与高的长度,只要

底和高相同,不同形状的三角形的面积也是相同的。

探索活动(三)梯形的面积

知识点:

1、 梯形面积=两个相同梯形拼成的平行四边形的面积÷2

梯形的上底与下底的和就是平行四边形的底,梯形的高就是平行四边形的高。

因此:梯形面积=平行四边形面积÷2=底×高÷2=(上底+下底)×高÷2

如果用S表示梯形的面积,用a和b分别表示梯形的上底和下底,用h表示梯形的高,

那么,梯形的面积公式可以写成:

S=

2、

1

(a+b)h

2

运用梯形面积的计算公式,解决相应的实际问题。

补充知识点:

决定梯形面积的大小的因素不是图形的形状,而是梯形的上、下底之和与高的长度,

只要上下底的和与高相同,不同形状的梯形的面积也是相同的。

三单元《分数》

分数的再认识

知识点:

在具体情境中,进一步认识分数。分数对应的“整体”不同,分数所表示的部分的

大小或具体数量也不一样,也就是分数具有相对性。

分饼(真分数与假分数)

知识点:

1、 理解真分数、假分数、带分数的意义。

1123

、、、,…这样的分数叫作真分数。

2434

特点:分子都比分母小。

3359

、、、,…这样的分数叫作假分数。

2344

特点:分子比分母大,或者分子与分母相等。

像 2

13

,1这样的分数叫作带分数。

44

特点:由整数和真分数两部分组成的。

2、

3、

真分数都小于1,假分数大于或等于1。

1

带分数的读法:2读作:二又四分之一。

4

补充知识点:

1、

2、

分子是分母倍数的假分数可以化成整数。

分子不是分母倍数的假分数可以化成带分数。

分数与除法

知识点:

1、 理解分数与除法的关系:被除数÷除数=

被除数

(除数不为0)。

除数

2、 分数的分母不能是0。因为在除法中,0不能做除数,因此根据分数与除法的关

系,分数中的分母相当于除法中的除数,所以分母也不能是0。

3、

4、

运用分数与除法的关系解决实际问题。用分数来表示两数相除的商。

根据分数与除法的关系把假分数化成带分数的方法。

用分子除以分母,把所得的商写在带分数的整数位置上,余数写在分数部分的分子

上,仍用原来的分母作分母。

5、 把带分数化成假分数的方法。(两种)

1) 把带分数分成整数与真分数的和的形式,把整数化成用真分数的分母作分母的

假分数,再加上原来的真分数,就可以把带分数转化成假分数。

2) 将整数与分母相乘的积加上分子作分子,分母不变。

分数基本性质

知识点:

1、 理解分数的基本性质。

分数的分子和分母都乘或除以相同的数(0除外),分数的大小不变。

2、 联系分数与除法的关系以及“商不变”的规律,来理解分数的基本性质。

分子相当于被除数,分母相当于除数,被除数和除数同时乘或除以相同的数(0除外),

商不变。因此分数的分子和分母都乘或除以相同的数(0除外),分数的大小也是不变

的。

3、 运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

找最大公因数

知识点:

1、 理解公因数和最大公因数的意义。

两数公有的因数是它们的公因数,其中最大的一个是它们的最大公因数。

2、 找两个数的公因数和最大公因数的方法。

运用找因数的方法先分别找到两个数各自的因数,再找出两个数的因数中相同的因数,

这些数就是两个数的公因数;再看看公因数中最大的是几,这个数就是两个数的最大公

因数。

3、 会找分子和分母的最大公因数。

补充知识点:

1、 其他找最大公因数的方法。

1) 找两个数的公因数和最大公因数,可以先找出两个数中较小的数的因数,再看看这

些因数中有哪些也是较大的数的因数,那么这些数就是这两个数的公因数。其中最

大的就是这两个数的最大公因数。

例如:找15和50的公因数和最大公因数:

可以先找出15的因数:1,3,5,15。再判断4个数中,哪几个也是50的因数,只

有1和5,1和5就是15和50的公因数。5就是它们的最大公因数。

2) 如果两个数是不同的质数,那么这两个数的公因数只有1。

3) 如果两个数是连续的自然数,那么这两个数的公因数只有1。

4) 如果两个数具有倍数关系,那么较小的数就是这两个数的最大公因数。

5) 也可适当的把短除法求公因数介绍给学生。(据学生实际情况而定。)

2、 4与所有奇数的最大公因数是1;4与4的倍数的最大公因数是4。

约分

知识点:

1、 理解约分的含义。

把一个分数的分子、分母同时除以公因数,分数的值不变,这个过程叫做约分。

2、 理解最简分数的含义。

1

像这样分子、分母公因数只有1了,不能再约分了,这样的分数是最简分数。

3

3、 掌握约分的方法。

约分的方法一般有两种,一种是用两个数的公因数一个一个去除,另一种是直接用两个

数的最大公因数去除。

补充知识点:

比较分数大小时,分母相同的、分子相同的可以直接比较,有些时候分子分母都不

相同可以采用约分后进行比较的方法。

52

例如:○

612

找最小公倍数

知识点:

1、 理解公倍数和最小公倍数的含义。

两个数公有的倍数叫做这两个数的公倍数,其中最小的一个,叫做最小公倍数。

2、 找两个数的公倍数和最小公倍数的方法。

先找出两个数各自的倍数(限制一定的范围内),再找出公有的倍数,最为两个数的公

倍数,看看这些公倍数中最小的是几,这个数就是两个数的最小公倍数。

3、 两个数公倍数的个数是无限的,因此只有最小公倍数没有最大的公倍数。

补充知识点:

其他找公倍数和最小公倍数的方法。

1、 找两个数的公倍数和最小公倍数,可以先找出两个数中较大的数的倍数(限制一

定的范围内),再看看这些倍数中有哪些也是较小的数的倍数,那么这些数就是

这两个数的公倍数。其中最小的就是这两个数的最小公倍数。

例如:找6和9的公倍数和最小公倍数。(50以内)可以先找出9的倍数(50以内)

有:9,18,27,36,45,再从这些数中找出6的倍数18,36,18和36就是6和

9的公倍数,18是最小公倍数。

2、

3、

如果两个数是不同的质数,那么这两个数的最小公倍数是两个数的乘积。

如果两个数是连续的自然数,那么这两个数的最小公倍数是两个数的乘积。

4、

5、

如果两个数具有倍数关系,那么较大的数就是这两个数的最小公倍数。

也可适当的把短除法求最小公倍数的方法介绍给学生。(据学生实际情况而定。)

分数的大小

知识点:

1、 理解通分的含义。

把分母不相同的分数化成和原来分数相等、并且分母相同的分数,这个过程叫作通分。

通分的两个要点:

(1) 和原来分数相等。

(2) 分母相同的数字。

2、 分数大小比较。

(1) 同分母分数相比较,分子越大分数越大。

(2) 同分子分数相比较,分母越小分数越大。

(3) 分子分母都不相同的分数相比较的方法。

第一, 用通分的方法把分母不相同的分数化成和原来分数相等、并且分母相同的分数,

再比较大小。

第二, 是把两个分数化成分子相同的分数,再比较大小。

补充知识点:

通分一般以最小公倍数作分母。

数学与交通

相遇

知识点:

1、 分析简单实际问题中的数量关系。

路程=速度×时间

2、 用方程解决简单的实际问题。

强调列方程解应用题的步骤:

(1)找到题中的等量关系式

(2)解设所求量为x

(3)根据等量关系式列出相应的方程

(4)解答方程,注意结果无单位名称。

(5)检验做答。

补充知识点:

速度=路程÷时间 时间=路程÷速度

旅游费用

知识点:

1、

2、

会利用已有的知识,依据实际情况给出较经济的方案。

掌握用列表法解决问题。

看图找关系

知识点:

1、 能读懂一些用来表示数量关系的图表,能从图表中获取有关信息,体会图表

的直观性。

2、

3、

结合实际问题情境,分析量与量之间的关系。

根据图的变化确定或描述行为、事件的变化。

四单元《分数加减法》

折纸(分数加减法一)

知识点:

1、 异分母分数加减法的算理。

分母不同的分数相加减,要先通分,化成相同的分母,再加减。

2、 计算结果能约分的要约成最简分数。

星期日的安排(分数加减法二)

知识点:

1、

2、

认识分数加减混合运算顺序与整数和小数的加减混合运算顺序相同。

计算加减混合运算时,方法要灵活处理,可以先全部通分,再进行计算;也

可计算三个数中的两个数后,再进行通分的;也有先部分进行通分,算出部

分的结果后,再第二次通分的。注意:具体的题型具体分析,尽量使计算过

程更加简便。

补充知识点:

整数加法交换律和结合律在分数加法中同样适用。

看课外书时间(分数与小数)

知识点:

1、 将分数化小数的方法有两种:一种是利用分数与除法的关系,即用分子除以

分母;一种是先把分数化为十进分数,然后再划为小数。

注意:第一种是一般的方法,适用于所有的分数化为小数,而后一种是特殊的方法,

需要根据分母的数值确定能否运用。

2、 将有限小数化为分数的方法:小数化分数,原来有几位小数,就在1后面写

几个0作分母,把原来小数去掉小数点作分子;化成分数后,能约分的要约

分。

五单元《图形的面积(二)》

组合图形面积

知识点:

1、

2、

了解组合图形:有几个简单的图形拼出来的图形,我们把它们叫做组合图形。

计算组合图形的面积的方法是多种多样的。一般运用的方法是“分割法”和“添

补法”。

分割法,即将这个图形分割成几个基本的图形。分割图形越简洁,其解题的方法也将越

简单,同时又要考虑分割的图形与所给条件的关系。

添补法,即通过补上一个简单的图形,使整个图形变成一个大的规则图形。

3、 运用所学的知识,解决生活中组合图形的实际问题。

探索活动:成长的脚印

知识点:

1、

2、

3、

能正确估计不规则图形面积的大小。

能用数格子的方法,计算不规则图形的面积。

估计、计算不规则图形面积的内容主要是以方格图作为北京进行估计与计算的,

所以借助方格图能帮助建立估计与计算不规则图形面积的方法。

尝试与猜测

鸡兔同笼

知识点:

借助“鸡兔同笼”这个载体让学生经历列表、尝试和不断调整的过程,从中体会出

解决问题的一般策略—列表。

点阵中的规律

知识点:

1、

2、

能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系。

在“点阵中的规律”的活动中,通过观察前后图形中点的变化规律,推理出后续

图形中点的数量。

六单元《可能性的大小》

摸球游戏(用分数表示可能性的大小)

知识点:

1、 用分数表示可能性的大小。

客观事件中,“不可能”出现的现象用数据表示为“可能性是0”,客观事件中,

“一定能”出现的现象用数据表示为“可能性是1”,当可能性是相等的时候,用数据

1

表述是“”。

2

2、 逐步体会到数据表示的简洁性与客观性。

设计活动方案

知识点:

1、

2、

运用分数表示可能性的大小,能自主地设计一些活动方案。

对实际生活中的事件与现象,能运用可能性的知识进行合理的解释。

数学与生活

迎新年

知识点:

1、

2、

通过活动,复习分数的认识与加减法的知识内容。

通过活动加深对可能性大小问题的理解,能用分数表示可能性大小,能按指定的

可能大小设计方案。

3、

4、

能将所学的知识进行综合,并能解决一些简单的实际问题。

铺地砖

知识点:

学习综合应用图形面积、乘除法、方程等知识解决简单的实际问题。

知识网络图:

数的世界:认识自然数和整数,联系乘法认识倍数与因数。

探索活动(一):2,5的倍数的特征。了解奇数、偶数的

定义。

探索活动(二):3的倍数的特征。

找因数:找一个数(1~100的自然数)的所有因数的方法。

找质数:理解质数、合数的含义。

数的奇偶性:用数的奇偶性解决问题,加法中的数的奇偶

性的变化规律。

分数的再认识:进一步理解分数的意义,体会“整体”与“部

分”的关系,了解一个分数对应的“整体”

不同,所表示的具体数量也不同。

分饼:认识镇分数、假分数、带分数。

分数与除法:知道分数与除法的关系,并能进行带分数与假

分数的互相转化。

分数基本性质:能把一个分数化成指定分母(或分子)而大

小不变的分数。

找最大公因数:找两个数的公因数和最大公因数。

约分:约分的含义、方法。

找最小公倍数:找两个数公倍数和最小公倍数。

分数的大小:通分的含义、方法,比较分数的大小。

折纸:异分母分数的加减法。

星期日的安排:分数加减混合运算。

看课外书时间:解决不同形式的数的大小比较问题,引出分

数与小数相互转化的方法。

比较图形的面积:运用多种方法比较图形面积的大小。

地毯上的图形面积:借助小方格数图形面积以利用分割方法

求图形面积。

动手做:认识平行四边形、三角形与梯形的底和高,会画图

形的高。

探索活动(一)平行四边形的面积:平行四边形面积公式的

推导、计算。

探索活动(二)三角形的面积:三角形面积公式的推导和计

算三角形面积。

探索活动(三)梯形的面积:梯形面积公式的推导和计算梯

形的面积。

率统

组合图形面积:将组合图形分割、添补成基本图形并计算其面积。

探索活动—成长的脚印:不规则图形面积的估算。

摸球游戏:通过摸球的游戏活动,会用分数表述某一事件发生的

可能性的大小。

设计活动方案:利用所学知识和指定的条件设计合理的游戏活

动。

相遇:速度、时间、路程的数量关系。用方程解决问题。

旅游费用:根据具体情况选择经济的费用放案。

看图找关系:能读懂两个量之间的关系图。

鸡兔同笼:列表举例、作图分析等解决问题的不同策略。

点阵中的规律:发现点阵中的规律,体会图形与数的联

系。

北师大版小学数学五年级(下册)知识点

一单元:《分数乘法》

分数乘法(一)

迎新年:综合运用所学的知识,解决一些简单的实际问

题。

铺地砖:综合应用图形面积、乘除法、方程等知识解决

简单的实际问题。

知识点:1、理解分数乘整数的意义。分数乘整数的意义同整数乘法的意义

相同,就是求几个相同加数的和的简便运算。

2、分数乘整数的计算方法。分母不变,分子和整数相乘的积作分子。

能约分的要约成最简分数。

3、计算时,可以先约分在计算。

分数乘法(二)

知识点:1、结合具体情境,进一步探索并理解分数乘整数的意义,并能正

确进行计算。

2、能够求一个数的几分之几是多少。

3、理解打折的含义。例如:九折,是指现价是原价的十分之九。

分数乘法(三)

知识点:1、分数乘分数的计算方法,并能正确进行计算。

分子相乘做分子,分母相乘做分母,能约分的可以先约分。计算结

果要求是最简分数。

2、比较分数相乘的积与每一个乘数的大小。

真分数相乘积小于任何一个乘数;真分数与假分数相乘积大于真分

数小于假分数。

二单元:《长方体(一)》

长方体的认识

知识点:1、认识长方体、正方体,了解各部分的名称。

2、长方体、正方体各自的特点。

顶 点 面 棱

个 数 个 数 形 状 大小关系 条数 长度关系

8 6

都是长方相对的面

12

形,特殊的是完全一

有两个相样的长方

对的面是

形。

正方形,其

余四个面

是完全一

样的长方

形。

8 6

都是正方每个面都

12

形。 是正方形。

长度都相

等。

可以分为

三组,相对

的棱平行

且相等。

3、知道正方体是特殊的长方体。

4、能计算长方体、正方体的棱长总和。

长方体的棱长总和=(长+宽+高)*4或者是长*4+宽*4+高*4

正方体的棱长总和=棱长*12

灵活运用公式,能求出长方体的长、宽、高或是正方体的棱长。

展开与折叠

知识点:1、认识并了解长方体和正方体的平面展开图。

2、了解正方体平面展开图的几种形式,并以此来判断。

长方体的表面积

知识点:1、理解表面积的意义。是指六个面的面积之和。

2、长方体和正方体表面积的计算方法。

3、能结合生活中的实际情况,计算图形的表面积。

露在外面的面

知识点:1、在观察中,通过不同的观察策略进行观察。

如:一种是看每个纸箱露在外面的面,再加到一起;另一种是分别从正

面、上面、侧面进行不同角度的观察,看每个角度都能看到多少个面,再

加到一起。

2、发现并找出堆放的正方体的个数与露在外面的面的面数的变化规

律。

三单元:《分数除法》

倒数

知识点:1、发现倒数的特征并理解倒数的意义。

如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。

倒数是对两个数来说的,并不是孤立存在的。

2、求倒数的方法。

把这个数的分子和分母调换位置。

3、1的倒数仍是1;0没有倒数。

0没有倒数,是因为在分数中,0不能做分母。

分数除法(一)

知识点:1、分数除以整数的意义及计算方法。

分数除以整数,就是求这个数的几分之几是多少。

分数除以整数(0除外)等于乘这个数的倒数。

分数除法(二)

知识点:1、一个数除以分数的意义和基本算理。

一个数除以分数的意义与整数除法的意义相同;一个数除以分数等于乘这

个数的倒数。

2、掌握一个数除以分数的计算方法。

除以一个数(0除外)等于乘这个数的倒数。

3、比较商与被除数的大小。

除数小于1,商大于被除数;

除数等于1。商等于被除数;

除数大于1,商小于被除数。

分数除法(三)

知识点:1、列方程“求一个数的几分之几是多少”。

2、利用等式的性质解方程。

3、理解打折的含义。

如:打8折就是指现价是原价的十分之八。

数学与生活

粉刷墙壁

知识点:1、明确我们在粉刷教室墙壁时必须知道的条件。

2、根据实际情况进行计算相应的面积。

折叠:

知识点:1、体会立体图形与展开图形之间的关系,发展空间观念。

2、能正确判断平面展开图所对应的简单立体图形。

四单元:《长方体(二)》

体积与容积

知识点:1、体积与容积的概念。

体积:物体所占空间的大小叫作物体的体积。

容积:容器所能容纳入体的体积叫做物体的容积。

体积单位

知识点:1、认识体积、容积单位。

常用的体积单位有:立方厘米、立方分米、立方米。

2、感受1立方米、1立方分米、1立方厘米以及1升、1毫升的实际

意义。

补充知识点:冰箱的容积用“升”作单位;我们饮用的自来水用“立方米”作

单位。

长方体的体积

知识点:1、结合具体情境和实践活动,探索并掌握长方体、正方体体积的

计算方法。

长方体的体积=长*宽*高

正方体的体积=棱长*棱长*棱长

长方体(正方体)的体积=底面积*高

2、能利用长方体(正方体)的体积及其他两个条件求出问题。如:长

方体的高=体积/长/宽

补充知识点:长方体的体积=横截面面积*长

体积单位的换算

知识点:1、体积、容积单位之间的进率。

相邻两个体积单位、容积单位之间的进率是1000。

有趣的测量

知识点:1、不规则物体体积的测量方法。

2、不规则物体体积的计算方法。

五单元:《分数混合运算》

分数混合运算(一)

知识点:1、体会分数混合运算的运算顺序和整数是一样的。

分数混合运算(二)

知识点:整数的运算律在分数运算中同样适用。

分数混合运算(三)

知识点:1、利用方程解决与分数运算有关的实际问题。

2、分数中的估算。

3、利用线段图来分析题中的数量关系。

4、对最后结果的检验。

六单元:《百分数》

百分数的意义

知识点:1、百分数的意义。

百分数表示一个数另一个数的百分之几。百分数也叫百分比、百分率。

2、能正确读写百分数。

3、结合生活中具体的例子理解百分数的意义。

合格率(百分数的应用一)

知识点:1、解决一个数是另一个数的百分之几的实际问题。

这部分知识同分数除法中求一个数是另一个数的几分之几相同。

2、能正确地将小数、分数化成百分数。

小数化成百分数的方法:把小数化成百分数,只要把小数点向右移动

两位,同时在后面添上百分号;把分数化成百分数,可以先把分数化成小

数(除不尽时,通常保留三位小数),再写成百分数;也可以把分子分母

同时乘一个数将其化成一百分之几的数,再写成百分数。

蛋白质含量(百分数的应用二)

知识点:1、求一个数的百分之几是多少。方法同求一个数的几分之几是多

少。

2、百分数化成小数、分数的方法。

百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

百分数化成小数时,要把百分号去掉,同时把小数点向左移动两位。

这个月我当家(百分数应用三)

知识点:1、用方程解决“已知一个数的百分之几多少,求这个数”的实际问

题。

2、体会百分数与统计的关系。

数学与购物

估计费用

知识点:根据实际的问题,选择合理的估算策略,进行估算。

购物策略

知识点:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够

最终选择最为优惠的方案。

包装的学问

知识点:1、探索多个相同长方体叠放后使其表面积最小的最有策略。

2、掌握解决问题的基本方法和过程。

七单元:《统计》

扇形统计图

知识点:1、认识扇形统计图,了解扇形统计图的特点与作用。

2、能读懂扇形统计图,并能从中获得相应的数学信息。

奥运会(统计图的选择)

知识点:1、了解条形统计图、扇形统计图、折线统计图的特点。

条形统计图便于看出数据的多少;扇形统计图能清楚地看出整体与部

分之间的关系;折线统计图能看出数据的变化趋势。

2、能够根据需要选择最为直观、有效地统计图表示数据。

中位数和众数

知识点:1、中位数和众数的意义。

将一组数据从小到大(或从大到小)排列,中间的数称为这组数据的

中位数。

一组数据中出现次数最多的数称为这组数据的众数。

2、中位数和众数的求法。

将一组数据按大小的顺序排列,如果是奇数个数据,中间的数就为这

组数据的中位数,如果是偶数个数据,中间两个数的平均数为这组数据的

中位数。

众数,就是一组数据中出现次数最多的,有可能是多个众数。

3、能根据具体的问题,选择合适的统计两表示数据的不同特征。

了解同学

知识点:综合运用所学的统计知识,发展学生的统计观念。

数学北师大版五年级下册知识点罗列汇总表

一单元

数乘法

二单元

方体

(一)

三单元

各单元目录

分数乘法(一)

分数乘法(二)

分数乘法(三)

长方体的认识

展开与折叠

长方体的表面

露在外面的面

倒数

分数除法(一)

对 应 知 识 点

1、分数乘整数“几个几分之几是多少”的意义

2、分数乘整数的计算方法

3、解决相应的分数乘整数的实际问题

1、分数乘整数“一个数的几分之几是多少”的意义

2、解决相应的分数乘整数的实际问题

1、分数乘分数的意义

2、分数乘分数的计算方法

3、解决相应分数乘分数的实际问题

1、长方体、正方体各部分名称

2、长方体和正方体特点

3、解决运用长方体和正方体特点的相应问题

1、长方体、正方体的展开图,

2、对长方体、正方体特点的再认识

1、长方体、正方体的表面积

2、长方体、正方体表面积的计算方法

3、解决运用长方体和正方体表面积的相应问题

1.解决有关物体外露面的个数及面积的问题

1.倒数的意义

2.求一个数的倒数

1、分数除以整数的意义

数除法

2、分数除以整数的计算方法

3、解决相应分数除以整数的的实际问题

1、整数除以分数的意义

分数除法(二) 2、一个数除以分数的计算方法

3、解决相应一个数除以分数的的实际问题

1、解简单的分数方程:ax=b

分数除法(三)

2、用方程解决简单的有关分数的实际问题

生活

分刷墙壁 1、综合应用图形的面积、计算解决生活中的问题

1、立体图和平面展开图之间的关系

折叠

2、判断平面展开图所对应的简单立体图形

1、体积的含义

体积和容积

2、容积的含义

四单元

方体

(二)

有趣的测量

分数混合运算

2、“求一个数是另一个数的几分之几”的混合实际

运用

体积单位

2、容积单位:升、毫升

长方体的体积

体积单位的换

1、长方体、正方体的计算方法

2、解决长方体正方体的体积的实际问题

1、体积、容积单位之间的进率

2、体积、容积单位之间换算。

1、不规则物体体积的测量方法

1、分数混合运算顺序

1、体积单位:立方米、立方分米、立方厘米

五单元

(一)

分数混合运算

数混合

(二)

运算

分数混合运算

(三)

1、分数混合运算律

2、“求一个数比另一个数多(少)几分之几”的混

合实际运用

1、解稍复杂的分数方程:ax±b=c,ax±bx=c,

2、利用方程解决与分数运算有关的实际问题

分数

购物

1、百分数的意义

百分数的认识

2、正确读写百分数

1、小数、分数化成百分数

合格率 2、合格率、成活率、出勤率等的意义

3、求“一个数是另一个数的百分之几”的实际运用

1、百分数化成小数、分数

蛋白质含量

2、求“一个数的百分之几是多少”的实际运用

1、百分数与统计的联系

2、“已知一个数的百分之几是多少,求这个数”的

这月我当家

实际运用

3、用方程解决有关百分数的简单实际问题

估计费用 1、选择合理的估算策略

购物策略 1、根据实际需要,比较常见的几种优惠策略

1、多个相同长方体叠放后使其表面积最小的最优

包装的学问

策略


更多推荐

分数,面积,图形,方法