2023年12月2日发(作者:河北省初升高数学试卷)
七年级下册数学期末试卷综合测试卷(word含答案)
一、选择题
1.实数2的平方根为()
A.2 B.2 C.2 D.2
2.如图所示的车标,可以看作由平移得到的是(
)
A. B. C. D.
3.如果Pa,b在第三象限,那么点Qab,ab在(
)
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列命题是假命题的是(
)
A.三角形三个内角的和等于180
B.对顶角相等
C.在同一平面内,垂直于同一条直线的两条直线互相平行
D.两条直线被第三条直线所截,同位角相等
5.如图,直线AB//CD,点E,F分别在直线.AB和直线CD上,点P在两条平行线之间,AEP和CFP的角平分线交于点H,已知P78,则H的度数为(
)
A.102 B.156 C.142 D.141
6.下列说法中,正确的是( )
A.(﹣2)3的立方根是﹣2
C.64的立方根是4
中与互余的角共有(
)
B.0.4的算术平方根是0.2
D.16的平方根是4
7.将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图
A.0个 B.1个 C.2个 D.3个
8.已知点A3129,5079,将点A作如下平移:第1次将A向右平移1个单位,向上平移2个单位得到A1;第2次将A1向右平移2个单位,向上平移3个单位得到A2,,第n次将点An1向右平移n个单位,向上平移n1个单位得到An,则A100的坐标为(
)
A.2021,71 B.2021,723 C.1921,71 D.1921,723
二、填空题
9.25的算术平方根是 _______ .
10.点P关于y轴的对称点是(3,﹣2),则P关于原点的对称点是__.
11.如图.已知点C为两条相互平行的直线AB,ED之间一动点,ABC和CDE的角平分线相交于F,若BCDBFD30,则BCD的度数为________.
34
12.将一条长方形纸带按如图方式折叠,若1108,则2的度数为________°.
13.如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=72°,则∠AED′=__.
31,现对50进行如下14.任何实数a,可用a表示不超过a的最大整数,如44,第一次第二次第三次=77=250操作:502=1,这样对50只需进行3次操作后变为1,类似地,对72只需进行3次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是______.
15.如图,点A(1,0),B(2,0),C是y轴上一点,且三角形ABC的面积为2,则点C的坐标为_____.
16.如图:在平面直角坐标系中,已知P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,依次扩展下去,则点P2021的坐标为
_____________.
三、解答题
17.计算.
78;
(1)12+202213(2)12716.
218.求下列各式中的x值
(1)16x1=49
﹣x)3=125
(2)8(1219.如图所示,已知∠1+∠2=180°,∠B=∠3,请你判断DE和BC平行吗?说明理由.(请根据下面的解答过程,在横线上补全过程和理由)
解:DE∥BC.理由如下:
∵∠1+∠4=180°(平角的定义),∠1+∠2=180°(
),
∴∠2=∠4(
).
∴
∥
(
).
∴∠3=
(
).
∵∠3=∠B(
),
∴
=
(
).
∴DE∥BC(
).
20.在平面直角坐标系中,O为坐标原点,点A的坐标为a,a,点B坐标为a,b,且满足ab4.
(1)若a没有平方根,且点B到x轴的距离是点A到x轴距离的3倍,求点B的坐标;
(2)点D的坐标为4,2,OAB的面积是DAB的2倍,求点B的坐标.
21.大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不能全部地写出来,于是小聪用21来表示2的小数部分,你同意小聪的表示方法吗?事实上小聪的表示方法是有道理的,因为2的整数部分是1,用个数减去其整数部分,差就是它的小数部分.
请解答下列问题:
(1)10的整数部分是____,小数部分是_____.
(2)如果55的小数部分是a,412的整数部分是b,求ab5的值.
(3)已知611xy,其中x是正整数,0y1,求xy的相反数.
二十二、解答题
22.如图,用两个边长为103的小正方形拼成一个大的正方形.
(1)求大正方形的边长?
(2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm2?
二十三、解答题
23.已知:AB∥CD,截线MN分别交AB、CD于点M、N.
(1)如图①,点B在线段MN上,设∠EBM=α°,∠DNM=β°,且满足a30+(β﹣60)2=0,求∠BEM的度数;
(2)如图②,在(1)的条件下,射线DF平分∠CDE,且交线段BE的延长线于点F;请写出∠DEF与∠CDF之间的数量关系,并说明理由;
(3)如图③,当点P在射线NT上运动时,∠DCP与∠BMT的平分线交于点Q,则∠Q与∠CPM的比值为
(直接写出答案).
24.已知点A,B,O在一条直线上,以点O为端点在直线AB的同一侧作射线OC,OD,OE使BOCEOD60.
(1)如图①,若OD平分BOC,求AOE的度数;
(2)如图②,将EOD绕点O按逆时针方向转动到某个位置时,使得OD所在射线把BOC分成两个角.
①若COD:BOD1:2,求AOE的度数;
②若COD:BOD1:n(n为正整数),直接用含n的代数式表示AOE.
25.如图所示,已知射线CB//OA,AB//OC,COAB100.点E、F在射线CB上,且满足FOBAOB,OE平分COF
(1)求EOB的度数;
(2)若平行移动AB,那么OBC:OFC的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值;
(3)在平行移动AB的过程中,是否存在某种情况,使OECOBA?若存在,求出其度数.若不存在,请说明理由.
26.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.
小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.
问题迁移:
(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;
(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.
【参考答案】
一、选择题
1.D
解析:D
【分析】
利用平方根的定义求解即可.
【详解】
∵2的平方根是2.
故选D.
【点睛】
此题主要考查了平方根的定义,注意一个正数的平方根有2个,它们互为相反数.
2.B
【分析】
根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解.
【详解】
解:A、不能经过平移得到的,故不符合题意;
B、可以经过平
解析:B
【分析】
根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解.
【详解】
解:A、不能经过平移得到的,故不符合题意;
B、可以经过平移得到的,故符合题意;
C、不能经过平移得到的,故不符合题意;
D、不能经过平移得到的,故不符合题意;
故选B.
【点睛】
本题主要考查了图形的平移,解题的关键在于能够熟练掌握图形平移的概念.
3.B
【分析】 根据第三象限内点的横坐标是负数,纵坐标是负数确定出a、b的正负情况,再求出a+b,ab的正负情况,然后确定出点Q所在的象限,即可得解.
【详解】
解:∵点P(a,b)在第三象限,
∴a<0,b<0,
∴a+b<0,ab>0,
∴点Q(a+b,ab)在第二象限.
故选:B.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.D
【分析】
根据三角形内角和定理,对顶角的性质,平行线的判定和性质逐一判断即可.
【详解】
解:A、三角形三个内角的和等于180°,故此说法正确,是真命题;
B、对顶角相等,故此说法正确,是真命题;
C、在同一平面内,垂直于同一条直线的两条直线互相平行两条,故此说法正确,是真命题;
D、两条平行直线被第三条直线所截,同位角相等,故此说法错误,是假命题.
故选D.
【点睛】
本题主要考查了命题的真假,解题的关键在于能够熟练掌握相关知识进行判断求解.
5.D
【分析】
过点P作PQ∥AB,过点H作HG∥AB,根据平行线的性质得到∠EPF=∠BEP+∠DFP=78°,结合角平分线的定义得到∠AEH+∠CFH,同理可得∠EHF=∠AEH+∠CFH.
【详解】
解:过点P作PQ∥AB,过点H作HG∥AB,
AB//CD,
则PQ∥CD,HG∥CD,
∴∠BEP=∠QPE,∠DFP=∠QPF,
∵∠EPF=∠QPE+∠QPF=78°,
∴∠BEP+∠DFP=78°,
∴∠AEP+∠CFP=360°-78°=282°,
∵EH平分∠AEP,HF平分∠CFP,
∴∠AEH+∠CFH=282°÷2=141°,
同理可得:∠EHF=∠AEH+∠CFH=141°, 故选D.
【点睛】
本题主要考查了平行线的性质,解决问题的关键是作平行线构造内错角,利用两直线平行,内错角相等得出结论.
6.A
【分析】
根据立方根的定义及平方根的定义依次判断即可得到答案.
【详解】
解:A.(﹣2)3的立方根是﹣2,故本选项符合题意;
B.0.04的算术平方根是0.2,故本选项不符合题意;
C.
64的立方根是2,故本选项不符合题意;
D.16的平方根是±4,故本选项不符合题意;
故选:A.
【点睛】
此题考查立方根的定义及平方根的定义,熟记定义是解题的关键.
7.B
【分析】
由互余的定义、平行线的性质,利用等量代换求解即可.
【详解】
解:∵斜边与这根直尺平行,
∴∠α=∠2,
又∵∠1+∠2=90°,
∴∠1+∠α=90°,
又∠α+∠3=90°
∴与α互余的角为∠1和∠3.
故选:B.
【点睛】
此题考查的是对平行线的性质的理解,目的是找出与∠α和为90°的角.
8.C 【分析】
解:从到的过程中,找到共向右、向上平移的规律、,令,则共向右、向上平移了:、,即可得出的坐标.
【详解】
解:可将点看成是两个方向的移动,
从到的过程中,
共向右平移了
,
共向上平移
解析:C
【分析】
解:从A到An的过程中,找到共向右、向上平移的规律123(n1)n(1n)n、2342n(n1)(3n)n,令n100,则共向2右、向上平移了:【详解】
(1100)100(3100)1005050、5150,即可得出A100的坐标.
22解:可将点A看成是两个方向的移动,
从A到An的过程中,
共向右平移了
123(n1)n(1n)n,
2共向上平移了
234n(n1)2(n1)n(3n)n,
22令n100,则共向右平移了:共向上平移了(1100)1005050,
2(3100)1005150,
2A(3129,5079),
又312950501921,5079515071,
故A100(1921,71),
故选:C.
【点睛】
本题考查了点的坐标规律问题,解题的关键是找到向右及向上平移的规律,再利用规律进行解答.
二、填空题
9.5 【详解】
试题分析:根据算术平方根的定义即可求出结果,算术平方根只有一个正根.
∵52=25, ∴25的算术平方根是5.
考点:算术平方根.
解析:5
【详解】
试题分析:根据算术平方根的定义即可求出结果,算术平方根只有一个正根.
∵52=25, ∴25的算术平方根是5.
考点:算术平方根.
10.【分析】
直接利用关于y轴对称点的性质得出P点坐标,再利用关于原点对称点的性质得出答案.
【详解】
解:∵点P关于y轴的对称点是,
∴点,
则P关于原点的对称点是.
故答案为:.
【点睛】
本题考
解析:3,2
【分析】
直接利用关于y轴对称点的性质得出P点坐标,再利用关于原点对称点的性质得出答案.
【详解】
解:∵点P关于y轴的对称点是3,-2,
∴点P3,2,
则P关于原点的对称点是3,2.
故答案为:3,2.
【点睛】
本题考查关于x轴、y轴对称的点的坐标求法、关于原点对称的点的坐标求法,牢记相关性质是解题关键.
11.120°
【分析】
由角平分线的定义可得,,又由,得,;设,,则;再根据四边形内角和定理得到,最后根据即可求解.
【详解】 解:和的角平分线相交于,
,,
又,
,,
设,,
,
在四边形中,,,,
解析:120°
【分析】
由角平分线的定义可得EDAADC,CBEABE,又由AB//ED,得EDFDAB,DFEABF;设EDFDABx,DFEABFy,则DFBxy;再根据四边形内角和定理得到BCD3602(xy),最后根据3BCDBFD30即可求解.
4【详解】
解:ABC和CDE的角平分线相交于F,
EDAADC,CBEABE,
又AB//ED,
EDFDAB,DEFABF,
设EDFDABx,DEFABFy,
BFDEDAADExy,
在四边形BCDF中,FBCx,ADCy,BFDxy,
BCD3602(xy),
3BCDBFD30,
4BFDxy120,
BCD3602(xy)120,
故答案为:120.
【点睛】
本题考查了平行线的判定和性质,正确的识别图形是解题的关键.
12.36
【分析】
根据平行线的性质、折叠的性质即可解决.
【详解】
∵AB∥CD,如图
∴∠GEC=∠1=108゜
由折叠的性质可得:∠2=∠FED
∵∠2+∠FED+∠GEC=180゜ ∴∠2=
解析:36
【分析】
根据平行线的性质、折叠的性质即可解决.
【详解】
∵AB∥CD,如图
∴∠GEC=∠1=108゜
由折叠的性质可得:∠2=∠FED
∵∠2+∠FED+∠GEC=180゜
11∴∠2=(180GEC)(180108)36
22故答案为:36
【点睛】
本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质.
13.36°
【分析】
根据平行线的性质可知∠DEF=∠EFB=72°,由折叠的性质求出∠D′EF72°,然后可求∠AED′的值.
【详解】
解:∵四边形ABCD为长方形,
∴AD//BC,
∴∠DEF=
解析:36°
【分析】
根据平行线的性质可知∠DEF=∠EFB=72°,由折叠的性质求出∠D′EF72°,然后可求∠AED′的值.
【详解】
解:∵四边形ABCD为长方形,
∴AD//BC,
∴∠DEF=∠EFB=72°,
又由折叠的性质可得∠D′EF=∠DEF=72°, ∴∠AED′=180°﹣72°﹣72°=36°,
故答案为:36°.
【点睛】
本题考查了平行线的性质,折叠的性质,熟练掌握折叠的性质是解答本题的关键.
14.255
【分析】
根据[a]的含义求出这个数的范围,再求最大值.
【详解】
解:设这个数是p,
∵[x]=1
.∴1≤x<2.
∴1≤<2.
∴1≤m<4.
∴1≤<16.
∴1≤p<256.
∵p
解析:255
【分析】
根据[a]的含义求出这个数的范围,再求最大值.
【详解】
解:设这个数是p,
∵[x]=1
.∴1≤x<2.
∴1≤m<2.
∴1≤m<4.
∴1≤p<16.
∴1≤p<256.
∵p是整数.
∴p的最大值为255.
故答案为:255.
【点睛】
本题考查了估算无理数的大小,正确理解取整含义是求解本题的关键.
15.(0,4)或(0,-4).
【分析】
设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.
【详解】 解:设△ABC边AB上的高为h,
∵A(1,0),
解析:(0,4)或(0,-4).
【分析】
设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.
【详解】
解:设△ABC边AB上的高为h,
∵A(1,0),B(2,0),
∴AB=2-1=1,
∴△ABC的面积=2×1•h=2,
解得h=4,
点C在y轴正半轴时,点C为(0,4),
点C在y轴负半轴时,点C为(0,-4),
所以,点C的坐标为(0,4)或(0,-4).
故答案为:(0,4)或(0,-4).
【点睛】
本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键.
116.(﹣506,505)
【分析】
根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且
解析:(﹣506,505)
【分析】
根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且纵坐标=2020÷4,再根据第二项象限点的规律即可得出结论.
【详解】
解:∵P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,
∴下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,
∵2021÷4=505…1,
∴点P2021在第二象限,
∵点P5(﹣2,1),点P9(﹣3,2),点P13(﹣4,3),
∴点P2021(﹣506,505),
故答案为:(﹣506,505). 【点睛】
本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标.
三、解答题
17.(1)3;(2)
【分析】
(1)根据有理数加减混合运算法则求解即可;
(2)根据平方根与立方根的定义先化简,然后合并求解即可.
【详解】
解:(1)原式
(2)原式
【点睛】
本题考查有理数
3解析:(1)3;(2)
2【分析】
(1)根据有理数加减混合运算法则求解即可;
(2)根据平方根与立方根的定义先化简,然后合并求解即可.
【详解】
解:(1)原式12783
1(2)原式134
2134
254
23
2【点睛】
本题考查有理数的加减混合运算,以及实数的混合运算等,掌握基本的运算法则,注意运算顺序是解题关键.
18.(1);(2).
【分析】
(1)根据平方根的性质,直接开方,即可解答;
(2)根据立方根,直接开立方,即可解答.
【详解】
解:(1)
, .
(2)
.
【点睛】
本题考查平方根、立方根,
解析:(1)x1,x2【分析】
(1)根据平方根的性质,直接开方,即可解答;
(2)根据立方根,直接开立方,即可解答.
【详解】
解:(1)16(x1)2(x1)2x134311;(2)x.
4249
491674
,
11.
4x1,x234(2)8(1x)3125
(1x)31x52125
8
3x.
2【点睛】
本题考查平方根、立方根,解决本题的关键是熟记平方根、立方根的相关性质.
19.已知;同角的补角相等;AB;EF;内错角相等,两直线平行;∠ADE;两直线平行,内错角相等;已知;∠B;∠ADE;等量代换;同位角相等,两直线平行
【分析】
求出∠2=∠4,根据平行线的判定得出AB
解析:已知;同角的补角相等;AB;EF;内错角相等,两直线平行;∠ADE;两直线平行,内错角相等;已知;∠B;∠ADE;等量代换;同位角相等,两直线平行
【分析】
求出∠2=∠4,根据平行线的判定得出AB∥EF,根据平行线的性质得出∠3=∠ADE,求出∠B=∠ADE,再根据平行线的判定推出即可.
【详解】
解:DE∥BC,理由如下:
∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知), ∴∠2=∠4(同角的补角相等),
∴AB∥EF(内错角相等,两直线平行),
∴∠3=∠ADE(两直线平行,内错角相等),
∵∠3=∠B(已知),
∴∠B=∠ADE(等量代换),
∴DE∥BC(同位角相等,两直线平行),
【点睛】
此题考查了平行线的判定与性质,熟练掌握平行线的性质定理及判定定理是解题的关键.
20.(1)(-2,6);(2)(,)或(8,-4)
【分析】
(1)根据平方根的意义得到a<0,再利用点B到x轴的距离是点A到x轴距离的3倍得到方程,解之得到a值,可写出B点坐标;
(2)利用A(a,-
48解析:(1)(-2,6);(2)(,)或(8,-4)
33【分析】
(1)根据平方根的意义得到a<0,再利用点B到x轴的距离是点A到x轴距离的3倍得到方程,解之得到a值,可写出B点坐标;
(2)利用A(a,-a)和B(a,4-a)得到AB=4,AB与y轴平行,由于点D的坐标为(4,-2),△OAB的面积是△DAB面积的2倍,则判断点A、点B在y轴的右侧,即a>0,根据三角形面积公式得到4a244a,解方程得到a值,然后写出B点坐标.
【详解】
解:(1)∵a没有平方根,
∴a<0,
∴-a>0,
∵点B到x轴的距离是点A到x轴距离的3倍,
∴b3a,
∵a+b=4,
∴4a3a,
解得:a=-2或a=1(舍),
∴b=6,此时点B的坐标为(-2,6);
(2)∵点A的坐标为(a,-a),点B坐标为(a,4-a),
∴AB=4,AB与y轴平行,
∵点D的坐标为(4,-2),△OAB的面积是△DAB面积的2倍,
∴点A、点B在y轴的右侧,即a>0,
∴114a244a,
2212128解得:a=或a=8,
348∴B点坐标为(,)或(8,-4).
33【点睛】
本题考查了坐标与图形性质:利用点的坐标计算线段的长和判断线段与坐标轴的位置关系.也考查了三角形的面积公式和平方根的性质.
21.(1)3;;(2)7;(3)
【分析】
(1)先求出的取值范围,即可求出的整数部分,从而求出结论;
(2)先估算的大小,再求出其小数部分a的值,同理估计的大小,再求出其整数部分b的值,即可求解;
(
解析:(1)3;103;(2)7;(3)211
【分析】
(1)先求出10的取值范围,即可求出10的整数部分,从而求出结论;
(2)先估算55的大小,再求出其小数部分a的值,同理估计412的大小,再求出其整数部分b的值,即可求解;
(3)根据题意先求出x,y所表示的数,再求出x-y,即可求出其相反数.
【详解】
解:(1)∵3<10<4,
∴10的整数部分是3,小数部分是103
故答案为:3;103;
(2)∵253
∴352
∴2553
∴55的小数部分a=55-2=35
∵6417
∴44125
∴412的整数部分b=4
∴ab5
=35+45
=7;
(3)∵3114
∴11
∴26113
∴611的整数部分为2,小数部分为611-2=411 ∵611xy,其中x是正整数,0y1,
∴x2,y=411
∴xy=2411112
∴xy的相反数为211.
【点睛】
此题考查的是求无理数的整数部分和小数部分,掌握无理数的估算方法是解题关键.
二十二、解答题
22.(1)大正方形的边长是;(2)不能
【分析】
(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;
(2)先求出长方形的边长,再判断即可.
【详解】
(1)大正方形的边长是
(2)设长方形纸
解析:(1)大正方形的边长是106;(2)不能
【分析】
(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;
(2)先求出长方形的边长,再判断即可.
【详解】
(1)大正方形的边长是106
(2)设长方形纸片的长为3xcm,宽为2xcm,
则3x•2x=480,
解得:x=80
因为380106,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为2:3,且面积为480cm2.
【点睛】
本题考查算术平方根,解题的关键是能根据题意列出算式.
二十三、解答题
23.(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)
【分析】
(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;
(2)过点E作直线EH∥AB,由角平分线的性质和平行
解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)2
【分析】
(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;
(2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣12x°=150°﹣2x°,由角的数量可求解;
(3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.
【详解】
解:(1)∵∵AB∥CD,
∴∠AMN=∠MND=60°,
∵∠AMN=∠B+∠BEM=60°,
∴∠BEM=60°﹣30°=30°;
(2)∠DEF+2∠CDF=150°.
理由如下:过点E作直线EH∥AB,
30+(β﹣60)2=0,
∴α=30,β=60,
∵DF平分∠CDE,
∴设∠CDF=∠EDF=x°;
∵EH∥AB,
∴∠DEH=∠EDC=2x°,
∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;
∴∠DEF=150°﹣2∠CDF,
即∠DEF+2∠CDF=150°;
(3)如图3,设MQ与CD交于点E,
∵MQ平分∠BMT,QC平分∠DCP,
∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,
∵AB∥CD,
∴∠BME=∠MEC,∠BMP=∠PND,
∵∠MEC=∠Q+∠DCQ,
∴2∠MEC=2∠Q+2∠DCQ,
∴∠PMB=2∠Q+∠PCD,
∵∠PND=∠PCD+∠CPM=∠PMB, ∴∠CPM=2∠Q,
∴∠Q与∠CPM的比值为2,
故答案为:2.
【点睛】
本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键.
1124.(1);(2)①;②.
【分析】
(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论;
(2)①根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最
解析:(1)AOE90;(2)①AOE80;②AOE(120【分析】
(1)依据角平分线的定义可求得COD30,再依据角的和差依次可求得EOC和60n).
n1BOE,根据邻补角的性质可求得结论;
(2)①根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得BOD,最后依据角的和差和邻补角的性质可求得结论;
②根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得BOD,最后依据角的和差和邻补角的性质可求得结论.
【详解】
解:(1)∵OD平分BOC,BOCEOD60,
1∴CODBOC30,
2∴EOCEODCOD30,
∴BOEEOCBOC90,
∴AOE180BOE90;
(2)①∵BOCEOD,
∴∠EOC+∠COD=∠BOD+∠COD,
∴∠EOC=∠BOD,
∵BOC60,COD:BOD1:2,
2∴BOD6040,
3∴EOCBOD40,
∴BOEEOCBOC100,
∴AOE180BOE80;
②∵BOCEOD,
∴∠EOC+∠COD=∠BOD+∠COD,
∴∠EOC=∠BOD, ∵BOC60,COD:BOD1:n,
∴BOD60n60n(),
n1n160n),
n160n60),
n160n).
n1∴EOCBOD(∴BOEEOCBOC(∴AOE180BOE(120【点睛】
本题考查邻补角的计算,角的和差,角平分线的有关计算.能正确识图,利用角的和差求得相应角的度数是解题关键.
25.(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°.
【分析】
(1)根据OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,从而得出答案;
(2
解析:(1)40°;(2)OBC:OFC的值不变,比值为2;(3)∠OEC=∠OBA=60°.
【分析】
(1)根据OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=2∠COA,从而得出答案;
(2)根据平行线的性质,即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根据∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:∠OFC的值为1:2.
(3)设∠AOB=x,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC,然后利用三角形的内角和等于180°列式表示出∠OBA,然后列出方程求解即可.
【详解】
(1)∵CB∥OA
∴∠C+∠COA=180°
∵∠C=100°
∴∠COA=180°-∠C=80°
∵∠FOB=∠AOB,OE平分∠COF
∴∠FOB+∠EOF=2(∠AOF+∠COF)=2∠COA=40°;
∴∠EOB=40°;
(2)∠OBC:∠OFC的值不发生变化
∵CB∥OA
∴∠OBC=∠BOA,∠OFC=∠FOA
∵∠FOB=∠AOB
∴∠FOA=2∠BOA
1111∴∠OFC=2∠OBC
∴∠OBC:∠OFC=1:2
(3)当平行移动AB至∠OBA=60°时,∠OEC=∠OBA.
设∠AOB=x,
∵CB∥AO,
∴∠CBO=∠AOB=x,
∵CB∥OA,AB∥OC,
∴∠OAB+∠ABC=180°,∠C+∠ABC=180°
∴∠OAB=∠C=100°.
∵∠OEC=∠CBO+∠EOB=x+40°,
∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,
∴x+40°=80°-x,
∴x=20°,
∴∠OEC=∠OBA=80°-20°=60°.
【点睛】
本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.
26.(1),理由见解析;
(2)当点P在B、O两点之间时,;
当点P在射线AM上时,.
【分析】
(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C
解析:(1)CPD,理由见解析;
(2)当点P在B、O两点之间时,CPD;
当点P在射线AM上时,CPD.
【分析】
(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;
(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.
【详解】
解:(1)∠CPD=∠α+∠β,理由如下:
如图,过P作PE∥AD交CD于E.
∵AD∥BC, ∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE+∠CPE=∠α+∠β.
(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.
理由:如图,过P作PE∥AD交CD于E.
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠CPE-∠DPE=∠β-∠α;
当点P在B、O两点之间时,∠CPD=∠α-∠β.
理由:如图,过P作PE∥AD交CD于E.
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE-∠CPE=∠α-∠β.
【点睛】
本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.
更多推荐
性质,平行线,考查,关键,解题,平移,直线
发布评论