2024年1月18日发(作者:如皋初级中学月考数学试卷)

文学生活多姿多彩

八年级数学公式总结大全

八年级上册数学公式法总结

二次函数抛物线顶点式&顶点坐标

顶点式:y=a(x-h) +k(a≠0,k为常数,x≠h)

顶点坐标公式顶点坐标:(-b/2a),(4ac-b )/4a)

二次函数y=ax2;,y=a(x-h)2;,y=a(x-h)2;+k,y=ax2;+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

解析式

y=ax2

y=a(x-h)2

y=a(x-h)2+k

y=ax2+bx+c

顶点坐标

[0,0]

[h,0]

[h,k]

[-b/2a,(4ac-b2)/4a]

1

文学生活多姿多彩

对称轴

x=0

x=h

x=h

x=-b/2a

当h>0时,y=a(x-h)2的图象可由抛物线y=ax2;向右平行移动h个单位得到,

当h0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;

当h>0,k0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;

当h0时,开口向上”当a0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax2+bx+c=0

(a≠0)的两根.这两点间的距离AB=|x2-x1|=.

当△=0.图象与x轴只有一个交点;

当△0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a0(a0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c__h 斜棱柱侧面积 S=c’__h

正棱锥侧面积 S=1/2c__h’正棱台侧面积 S=1/2(c+c’)h’

圆台侧面积 S=1/2(c+c’)l=pi(R+r)l 球的表面积 S=4pi__r2

2

文学生活多姿多彩

圆柱侧面积 S=c__h=2pi__h 圆锥侧面积 S=1/2__c__l=pi__r__l

弧长公式 l=a__r a是圆心角的弧度数r >0 扇形面积公式 s=1/2__l__r

锥体体积公式 V=1/3__S__H 圆锥体体积公式 V=1/3__pi__r2h

斜棱柱体积 V=S’L 注:其中,S’是直截面面积, L是侧棱长

柱体体积公式 V=s__h 圆柱体 V=pi__r2h

初中八年级数学所有公式

1、点线之间的关系

①过一点有且只有一条直线和已知直线垂直

②直线外一点与直线上各点连接的所有线段中,垂线段最短

2、平行定理与公理

①经过直线外一点,有且只有一条直线与这条直线平行

②如果两条直线都和第三条直线平行,这两条直线也互相平行

③同位角相等,两直线平行

④内错角相等,两直线平行

⑤同旁内角互补,两直线平行

3、三角形内角和定理与四边形内角和定理

三角形三个内角的和等于180°,四边形的外角和等于360°

3

文学生活多姿多彩

4、平行四边形、矩形、菱形、正方形和等腰梯形的判定定理与性质定理

①平行四边形判定定理1两组对角分别相等的四边形是平行四边形

②平行四边形判定定理2两组对边分别相等的四边形是平行四边形

③平行四边形判定定理3对角线互相平分的四边形是平行四边形

④平行四边形判定定理4一组对边平行相等的四边形是平行四边形

⑤矩形性质定理1矩形的四个角都是直角

⑥矩形性质定理2矩形的对角线相等

⑦矩形判定定理1有三个角是直角的四边形是矩形

⑧矩形判定定理2对角线相等的平行四边形是矩形

⑨菱形性质定理1菱形的四条边都相等

⑩菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角

……

5、圆的一些定理与推论

①圆的两条平行弦所夹的弧相等

②在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

③在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都相等

④一条弧所对的圆周角等于它所对的圆心角的一半

4

文学生活多姿多彩

⑤同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

⑥半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

⑦如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

⑧圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

6、直线与圆的位置关系

①直线L和⊙O相交d﹤r

②直线L和⊙O相切d=r

③直线L和⊙O相离d﹥r

7、两圆之间的位置关系

①两圆外离d﹥R+r

②两圆外切d=R+r

③两圆相交R-r﹤d﹤R+r(R﹥r)

④两圆内切d=R-r(R﹥r)

⑤两圆内含d﹤R-r(R﹥r)

5


更多推荐

定理,直线,相等,公式,面积,顶点,两圆,平行