2023年12月25日发(作者:河北省中考数学试卷分值)

古代数学名题:鸡兔同笼问题

鸡兔同笼是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中各有几只鸡和兔?

假设法:

假设全是鸡:2×35=70(只)

比总脚数少的:94-70=24 (只)

兔:24÷(4-2)=12 (只)

鸡:35-12=23(只)

方程法:

解:设兔有x只,则鸡有35-x只。

4x+2(35-x)=94

4x+70-2x=94

2x=24

x=24÷2

x=12

35-12=23

答:兔子有12只,小鸡有23只。

我国古代《孙子算经》共三卷,成书大约在公元5世纪。这本书浅显易懂,有许多有趣的算术题,比如“鸡兔同笼”问题:

今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

题目中给出了鸡兔共有35只,如果把兔子的两只前脚用绳子捆起来,看作是一只脚,两只后脚也用绳子捆起来,看作是一只脚,那么,兔子就成了2只脚,即把兔子都先当作两只脚的鸡。鸡兔总的脚数是35×2=70(只),比题中所说的94只要少94-70=24(只)。

现在,我们松开一只兔子脚上的绳子,总的脚数就会增加2只,即70+2=72(只),再松开一只兔子脚上的绳子,总的脚数又增加2,2,2,2„„,一直继续下去,直至增加24,因此兔子数:24÷2=12(只),从而鸡有35-12=23(只)。

我们来总结一下这道题的解题思路:如果先假设它们全是鸡,于是根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差的脚数除以2,就可以算出共有多少只兔。概括起来,解鸡兔同笼题的基本关系式是:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)。类似地,也可以假设全是兔子。

我们也可以采用列方程的办法:设兔子的数量为x,鸡的数量为y

那么:x+y=35那么4x+2y=94 这个算方程解出后得出:兔子有12只,鸡有23只。


更多推荐

脚数,兔子,鸡兔同笼,绳子,鸡兔,捆起来,鸡脚