2024年3月22日发(作者:2020合肥一模数学试卷)

第五章 相交线与平行线

测试1 相交线

学习要求

1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的

性质.

2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.

课堂学习检测

一、填空题

1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做

互为邻补角.

2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________

________,那么具有这种位置关系的两个角叫做对顶角.

3.对顶角的重要性质是_________________.

4.如图,直线AB、CD相交于O点,∠AOE=90°.

(1)∠1和∠2叫做______角;∠1和∠4互为______角;

∠2和∠3互为_______角;∠1和∠3互为______角;

∠2和∠4互为______角.

(2)若∠1=20°,那么∠2=______;

∠3=∠BOE-∠______=______°-______°=______°;

∠4=∠______-∠1=______°-______°=______°.

5.如图,直线AB与CD相交于O点,且∠COE=90°,则

(1)与∠BOD互补的角有________________________;

(2)与∠BOD互余的角有________________________;

(3)与∠EOA互余的角有________________________;

(4)若∠BOD=42°17′,则∠AOD=__________;∠EOD=______;∠AOE=______.

二、选择题

6.图中是对顶角的是( ).

7.如图,∠1的邻补角是( ).

1

(A)∠BOC

(C)∠AOF

(B)∠BOC和∠AOF

(D)∠BOE和∠AOF

8.如图,直线AB与CD相交于点O,若

AOC

1

AOD

,则∠BOD的度数为( ).

3

(A)30° (B)45°

(C)60° (D)135°

9.如图所示,直线l

1

,l

2

,l

3

相交于一点,则下列答案中,全对的一组是( ).

(A)∠1=90°,∠2=30°,∠3=∠4=60°

(B)∠1=∠3=90°,∠2=∠4=30°

(C)∠1=∠3=90°,∠2=∠4=60°

(D)∠1=∠3=90°,∠2=60°,∠4=30°

三、判断正误

10.如果两个角相等,那么这两个角是对顶角. (

11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角. (

12.有一条公共边的两个角是邻补角. (

13.如果两个角是邻补角,那么它们一定互为补角. (

14.对顶角的角平分线在同一直线上. (

15.有一条公共边和公共顶点,且互为补角的两个角是邻补角. (

综合、运用、诊断

一、解答题

16.如图所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求∠2的度数.

17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.

)

)

)

)

)

)

2


更多推荐

对顶角,补角,相交