2023年12月27日发(作者:历年湖南省高考数学试卷)
河北小学六年级上册数学思维导图
第一单元 圆和扇形(重点)
一、圆的特征
1、圆是平面内封闭曲线围成的平面图形。
2、圆的特征:外形美观,易滚动。
3、圆心o:圆中心的点叫做圆心.圆心一般用字母O表示。圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。
半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。
直径d: 通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。
同圆或等圆内直径是半径的2倍:d=2r 或 r=d÷2(重点)
4、等圆:半径相等的圆叫做等圆,等圆通过平移可以完全重合。
同心圆:圆心重合、半径不等的两个圆叫做同心圆。
5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。
有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角
有二条对称轴的图形:长方形
有三条对称轴的图形:等边三角形
有四条对称轴的图形:正方形
有无数条对称轴的图形:圆,圆环
6、画圆(重点)
(1)圆规两脚间的距离是圆的半径。
(2)画圆步骤:定半径、定圆心、旋转一周。
二、扇形
扇形是由两条半径和圆上的一段曲线围成的。扇形都有一个角,角的顶点在圆心。
第二单元 比和比例(重点)
一、比
1、比表示两个数相除。两个数相除的结果叫做比值。
2、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
注:连比如:3:4:5 读作:3比4比5
3、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20= 12÷20=0.6 12∶20读作:12比20
4、区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
5、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。(重点)
6、化简比:化简之后结果还是一个比,不是一个数。可以写成比,也可以写成分数的形式。(前项,后项是互质数)(易考点)
(1)、 用比的前项和后项同时除以它们的最大公约数。
(2)、 两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。
(3)、 两个小数的比,向右移动小数点的位置,也是先化成整数比。
4、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。(易考点)
5、比和除法、分数的区别:
除法
分数
比
被除数
分子
前项
除号(÷)
除数(不能为0)
分数线(—)
分母(不能为0)
比号(∶)
后项(不能为0)
商不变性质
除法是一种运算
分数的基本性质
比的基本性质
分数是一个数
比表示两个数的关系
附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
二、比例
表示两个比相等的式子叫做比例。判断两个比能不能组成比例,要看它们的比值是不是相等。组成比例的四个数,叫做
比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
在比例里,两个外项的积等于两个内项的积,这是比例的基本性质。
如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘,它们的积相等。
第三单元 百分数(重点)
一、百分数的意义:表示一个数是另一个数的百分之几。
注:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比,所以,百分数又叫百分比或百分率,百分数不能带单位。
1、百分数和分数的区别和联系:
(1)联系:都可以用来表示两个量的倍比关系。
(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。
百分数的分子可以是小数,分数的分子只以是整数。
注:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。
一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。(易考点)
2、小数、分数、百分数之间的互化(重点,易考点)
(1)百分数化小数:小数点向左移动两位,去掉“%”。
(2)小数化百分数:小数点向右移动两位,添上“%”。
(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。
(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。
(5)小数化分数:把小数化成分母是10、100、1000等的分数再化简。
(6)分数化小数:分子除以分母。
第四单元 圆的周长和面积(重点)
一、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。
1、圆的周长总是直径的三倍多一些。
2、圆周率:圆的周长与直径的比值是一个固定不变的数,叫做圆周率,用字母π表示。
即:圆周率π=周长÷直径≈3.14
所以, 圆的周长(c)=直径(d)×圆周率(π)
周长公式: c=πd, c=2πr
注:圆周率π是一个无限不循环小数,3.14是近似值。
3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
如果 r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3
4、半圆周长=圆周长一半+直径=πr+d
二、圆的面积s
1、圆面积公式的推导
如图把一个圆沿直径等分成若干份,剪开拼成近似的长方形,份数越多拼成的图像越接近长方形。
圆的半径 = 长方形的宽
圆的周长的一半 = 长方形的长
长方形面积 = 长 ×宽
所以:
圆的面积 = 长方形的面积 = 长 ×宽= 圆的周长的一半(πr)×圆的半径(r)
S = πr×r = πr2
2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。(易考点)
周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。
3、圆面积的变化的规律:半径扩大多少倍直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。(重点,易考点)
如果: r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3=2∶3∶4
则:S1∶S2∶S3=4∶9∶16
4、圆环面积 = 大圆面积– 小圆面积 (重点)
5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。
注:一个圆的半径增加a厘米,周长就增加2πa厘米
一个圆的直径增加b厘米,周长就增加πb 厘米
6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π
7、常用数据 π=3.14 2π=6.28 ……25π=78.5(非常有用)
第五单元 百分数应用题(重点)
1、 求常见的百分率, 如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。
2、 求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几 (甲-乙)÷乙
求乙比甲少百分之几 (甲-乙)÷甲
3、 求一个数的百分之几是多少 。 一个数(单位“1”) ×百分率
4、 已知一个数的百分之几是多少,求这个数。 部分量÷百分率=一个数(单位“1”)
5、 折扣 折扣、
打折的意义:几折就是十分之几也就是百分之几十
6、 纳税 缴纳的税款叫做应纳税额。
(应纳税额)÷(总收入)=(税率)
(总收入)×(税率)=(应纳税额)
7、 利率
(1)存入银行的钱叫做本金。
(2)取款时银行多支付的钱叫做利息。
(3)利息与本金的比值叫做利率。
利息=本金×利率×时间 (重点)
8、百分数应用题型分类
(1)求甲是乙的百分之几 (甲÷乙)= 百分之几
(2)求甲比乙多(少)百分之几 (甲-乙)÷乙= 百分之几
(乙-甲)÷乙= 百分之几
第六单元 比例尺
1、图上距离和实际距离的比,叫做这幅图的比例尺。
或
2、图上距离﹕实际距离=比例尺
3、求比例尺时要特别注意:图上距离和实际距离单位统一再化简。比例尺是一个比,不应带计量单位。为了计算简便,通常把比例尺写成前项(后项)为1的比。
4、根据比例尺的表现形式比例尺可分为:数值比例尺、线段比例尺
5、数值比例尺:1:2000000图上1厘米表示实际距离2000000厘米或图上1厘米表示实际距离20千米
第七单元、扇形统计图
1、 扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
2、 常用统计图的优点:
(1)、条形统计图直观显示每个数量的多少。
(2)、折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。
(3)、扇形统计图直观显示部分和总量的关系。
更多推荐
叫做,分数,表示,周长,半径,图形,直径,圆心
发布评论