2024年3月15日发(作者:唐山市期末真题数学试卷)

“离散数学”数理逻辑部分考核试题答案

━━━━━━━━━━━━━━━━━━

━━━━━━━━━━━━━━━━━━

一、命题逻辑基本知识(5分)

1、将下列命题符号化

(总共4题,完成的题号为学号尾数取4的余,完成1题。共2分)

(0)小刘既不怕吃苦,又爱钻研。

解:p∧q,其中,P:小刘怕吃苦;q:小刘爱钻研。

(1)只有不怕敌人,才能战胜敌人。

解:q→p,其中,P:怕敌人;q:战胜敌人。

(2)只要别人有困难,老张就帮助别人,除非困难已经解决了。

解:r→(p→p),其中,P:别人有困难;q:老张帮助别人;r:困难解决了。

(3)小王与小张是亲戚。

解:p,其中,P:小王与小张是亲戚。

2、判断下列公式的类型

(总共5题,完成的题号为学号尾数取5的余,完成1题。共1分)

(0)A:((pq)((pq) (pq))) r

(1)B:(p(qp)) (rq)

(2)C:(pr) (qr)

(3)E:p(pqr)

(4)F:(qr) r

解:用真值表判断,A为重言式,B为矛盾式,C为可满足式,E为重言式,F为矛盾式。

3、判断推理是否正确(总共2题,完成的题号为学号尾数取2的余,完成1题。共2分)

(0)设y=2|x|,x为实数。推理如下:如y在x=0处可导,则y在x=0处连续。发现y在x=0处连

续,所以,y在x=0处可导。

解:设y=2|x|,x为实数。令P:y在x=0处可导,q:y在x=0处连续。由此,p为假,q为真。本

题推理符号化为:(pq) qp。由p、q的真值,计算推理公式真值为假,由此,本题推理不正确。

(1)若2和3都是素数,则6是奇数。2是素数,3也是素数。所以,5或6是奇数。

解:令p:2是素数,q:3是素数,r:5是奇数,s:6是奇数。由此,p=1,q=1,r=1,s=0。本题推理

符号化为: ((p  q) →s) p q) →(r  s)。计算推理公式真值为真,由此,本题推理正确。

二、命题逻辑等值演算(5分)

1、用等值演算法求下列公式的主析取范式或主合取范式

(总共3题,完成的题号为学号尾数取3的余,完

成1题。共2分)

(0)求公式p→((q∧r) ∧(p∨(q∧r)))的主析取范式。

解:p→((q∧r) ∧(p∨(q∧r))) p∨(q∧r∧p) ∨(q∧r∧q∧r)

 p∨(q∧r∧p) ∨0  (p∧q∧r) ∨ (p∧1∧1) ∨(q∧r∧p)

 (p∧(q∨q)∧(r∨r)) ∨(q∧r∧p)  (p∧(q∨q)∧(r∨r)) ∨m7

 (p∧q∧r)∨(p∧q∧r)∨(p∧q∧r)∨(p∧q∧r)∨m7

m0∨m1∨m2∨m3∨m7.

(1)求公式((p→q)) ∨(q→p)的主合取范式。

解:((p→q))  (q→p) (p→q)  (p→q)  (p→q)

 pq  M2.

(2)求公式(p→(p∨q)) ∨r的主析取范式。

解:(p→(pq)) r  p (pq) r  (ppq r) 1

m0∨m1∨m2∨m3∨m4∨m5∨m6∨m7.

2、应用分析

(总共2题,完成的题号为学号尾数取2的余,完成1题。共3分)

(0)某村选村委,已知赵炼玉、钱谷王、孙竹湾被选进了村委,三村民甲、乙、丙预言:

甲预言:赵炼玉为村长,钱谷王为村支书。

乙预言:孙竹湾为村长,赵炼玉为村支书。

丙预言:钱谷王为村长,赵炼玉为村妇女主任。

村委分工公布后发现,甲乙丙三人各预测正确一半。赵炼玉、钱谷王、孙竹湾各担任什么职务?

解:设P1:赵炼玉为村长,p2:钱谷王为村长,p3:孙竹湾为村长,

q1:赵炼玉为村支书,q2: 钱谷王为村支书,r1:赵炼玉为村妇女主任。

判断公式F( (p1q2)  (p1q2))  ( (p3q1)  (p3q1))  ( (p2r1)  (p2r1))

 p1q2p3q1q2r11q2p3r1,

由此,钱谷王为村支书,孙竹湾为村长,赵炼玉为村妇女主任。

说明:p1、p2、p3有且仅有一个为真,q1、q2有且仅有一个为真。一个人不能担任两职,一

个职务不可由两人同时担任。

(1)某公司派赵、钱、孙、李、周五人出国学习。选派条件是:

① 若赵去,钱也去。② 李、周两人必有一人去。

③ 钱、孙两人去且仅去一人。④ 孙、李两人同去或同不去。

⑤ 如周去,则赵、钱也同去。如何选派他们出国?

解:① 设p:派赵去,q:派钱去,r:派孙去,s:派李去,u:派周去。

② (1) (pq) (2) (su) (3) ((qr)(qr))

(4) ((rs)(rs)) (5) (u(pq))

③ (1) ~ (5)构成的合取式为:

A= (pq)(su)((qr)(qr)) ((rs)(rs))(u(pq))

 (pqrsu)(pqrsu)

由此可知,A的成真赋值为00110与11001,

因而派孙、李去(赵、钱、周不去),或派赵、钱、周去(孙、李不去)。

三、命题逻辑推理(5分)

在自然推理系统中,构造下列推理过程

(总共3题,完成的题号为学号尾数取3的余,完成1题。共5分)

(0)如果张老师出国,则若李老师出国,王老师出国。现在的情况是张老师与李老师都要出国。所

以,王老师不出国,则孙老师出国。

解:形式化:

p:张老师出国;q:李老师出国;r:王老师出国;s:孙老师出国。

前提:p(qr),pq

结论:rs

证明:① p(qr) 【前提引入】

② p (qr)  pqr 【①置换】

③ pq 【前提引入】

④ r 【②③假言推理】

⑤ r s 【④附加规则】

⑥   r∨s 【⑤置换】

⑦ rs 【⑥置换】 证毕。

(1)若张同学与李同学是乐山人,则王同学是雅安人,若王同学是雅安人,则他喜欢吃雅鱼,然而,

2

王同学不喜欢吃雅鱼,张同学是乐山人。所以,李同学不是乐山人。

解:形式化:

p:张同学是乐山人;q:李同学是乐山人;r:王同学是雅安人;s:王同学喜欢吃雅鱼。

前提:(pq) r,r s,s,p

结论:q

证明:① (pq) r 【前提引入】

② r s 【前提引入】

③ (pq) s 【①②假言三段论】

④ s 【前提引入】

⑤ (pq) 【③④拒取式】

⑥ pq 【⑤置换】

⑦ p 【前提引入】

⑧ q 【⑥⑦析取三段论】

证毕。

(2)若n是偶数并且大于5,则m是奇数。只有n是偶数,m才大于6。现有n大于5。所以,若

m大于6,则m是奇数。

解:形式化:

p:n是偶数;q:n大于5;r:m是奇数;s:m大于6。

前提:(pq) r,s p,q

结论:s r

证明:① q 【前提引入】

② sq 【①附加规则】(这是证明的关键)

③ s q 【②置换】

④ s p 【前提引入】

⑤ (s q)q(s p) 【③④合取】

⑥ s(pq ) 【⑤置换】

⑦ (pq) r 【前提引入】

⑧ sr 【⑥⑦假言三段论】

证毕。

四、一阶逻辑的基本概念(5分)

1、一阶逻辑命题形式化

(总共6题,完成的题号为学号尾数取6的余,完成1题。共2分)

(0)人人都生活在地球上。

解:x(F(x) →G(x)),其中,F(x):x是人,G(x):x生活在地球上。

(1)有的人长着金色的头发。

解:x (F(x) G(x)),其中,F(x):x是人,G(x):x长着金色的头发。

(2)没有能表示成分数的无理数。

解:x (F(x) G(x)),其中,F(x):x是无理数,G(x):x能表示成分数。

(3)说所有的男人比所有的女人力气大是不正确的。

解:xy (F(x)  G(y)→S(x,y)),其中,F(x):x是男人,G(x):x是女人,S(x,y):x比y力气大。

(4)有的学生不住在校内。

解:x (F(x) G(x)),其中,F(x):x是学生,G(x):x住在校内。

(5)说有的男人比所有的女人力气大是正确的。。

解:x (F(x)  y(G(x)→S(x,y))),

其中,F(x):x是男人,G(x):x是女人,S(x,y):x比y力气大。

2、给出下列公式的一个成真解释和一个成假解释(

总共3题,完成的题号为学号尾数取3的余,完成1题。

第 3 页 共 5 页


更多推荐

推理,公式,下列,出国