2024年2月11日发(作者:今年北京高考数学试卷第19题)

我国著名数学家——吴文俊

吴文俊是中国著名的数学家。毕业于上海交通大学,1949年在法国取得博士学位。 在拓扑学的示性类和示嵌类、数学机械化等领域中作出了重要贡献,后者得益于他对中国数学史的研究。数学家 吴文俊院士贡献,在国内外享有盛誉。他在拓扑学的示性类、示嵌类的研究方面取得一系列重要成果,是拓扑学中的奠基性工作并有许多重要应用。他的“吴方法”在国际机器证明领域产生巨大的影响,有广泛重要的应用价值。当前国际流行的主要符号计算软件都实现了吴文俊教授的算法。他曾获得首届国家自然科学一等奖(1956)、中国科学院自然科学一等奖(1979)、第三世界科学院数学奖(1990)、陈嘉庚数理科学奖(1993)、首届香港求是科技基金会杰出科学家奖(1994)、Herbrand自动推理杰出成就奖(1997)、首届国家最高科学技术奖(2000)、第三届邵逸夫数学奖(2006)。2010年5月4日,国际小行星中心先后发布公报通知国际社会,将国际永久编号第7683号小行星永久命名为“吴文俊星”。数学史上的第一个中国原创的领域,被国际上称为“吴方法”。

胡锦涛主席看望吴文俊吴文俊教授的数学研究活动,可分为前后两个时期,涉及到好几个数学领域, 在代数拓扑和机器证明两个领域有重大贡献,对数学研究影响深远。前期自1947 年至70年代,以代数拓扑为主,他的贡献主要有:

通过Grassmann流形对在30年代由瑞士Stiefel,美国

1

Whitney,苏联Pontrjajin 和陈省身通过不同途径引入的示性类进行了系统的论述,确定了名称,探讨了相应关系,并应用于流形的构造。他引入的上同调类,后来在文献中被称之为吴示性类,他提出的蕴含拓扑不变性和同伦不变性的两个公式,后来都被称之为吴公式。由于这些结果的根本重要性,在多种问题中被广泛应用,如50年代德国的Dold,60年代德国的 Hirzebruch苏联的Novikov并因而获Fields奖,美国的Bott 与Milnor等等。

他引入具有非同伦拓扑不变量的一种一般构造方法,并系统地用之于嵌入问题,引入了复合形示嵌类,并用同样方法研究浸入问题与同痕问题,引入类似的示浸类与示痕类。瑞士Haefiger由于在1958年听到了他关于上述示嵌类研究工作的讲学,于1961年将嵌入问题作了重要推广,因而成为瑞士主要拓扑专家。美国Smale应用他的工作于维数大于4的Poincare猜测,并因而获Fields奖。他后来应用关于示嵌类的成果于电路布线问题,给出线性图平面性的新的判定准则,与以往的判定准则在性质上完全不同,尤其是可计算。 应当注意的是他在1956年前完成的研究成果的重要性,在多年以后才显现出来,至今仍在国际上广泛引用。吴文俊自动证明领域的突破。”“几何定理自动证明首先由Herbert Gerlenter于五十年代开始研究。虽然得到了一些有意义的结果,但在吴方法出现之前的二十年里这一领域进展甚微。在不多的自动推理领域中,这种被动局面是由一个人完全

2

扭转的。吴文俊很明显是这样一个人。”“吴的工作将几何定理证明自动推理的一个不太成功的领域变为最成功的领域之一。在很少的领域中,我们可以将机器证明归于一个人的工作。几何定理证明就是这样的一个领域。” 他引入的求解非线性代数方程组的吴方法是求解代数方程组精确解最完整的方法之一,已经被成功地用于解决很多问题,并实现在当前流行的符号计算软件中。欧共体资助的 POSSO计划(POlynomial System SOlving)中也有吴方法的专用软件包。吴方法还被用于若干高科技领域,得到一系列国际领先的成果。包括曲面造型,机器人机构的位置分析,智能CAD系统(计算机辅助设计),机器人,图像压缩等。八十年代末,他提出了偏微分代数方程组的整序方法,是目前处理偏微分代数方程组的完整的构造性方法。该方法已被应用于微分几何定理机器证明和偏微分方程组求解。扩展了代数簇的通常局限无奇点情形的陈示性数于有任意奇点的陈类与陈数,且定义是可计算的,形成代数几何机械化的新篇章。他给出了多元多项式组的零点结构定理,这是构造性代数几何发展的重要标志。

2010麻醉

李晋

3


更多推荐

领域,问题,证明,研究,国际