篇一:中国古代的趣味数学
中国古代的趣味数学
--简析几个典型的古代数学问题
夏超(马克思主义教育学院思想政治教育专业 学号:*******)
关键词:鸡兔同笼 百鸡问题 孙子定理
数学在中国拥有悠久的历史,在古人的智慧中,我们可以发现数学之美,探寻数学之趣, 数学的好玩之处,并不限于数学游戏。数学中有些极具实用意义的内容,包含了深刻的奥妙,发人深思,使人惊讶。中国古代的数学广泛应用于各个领域,对中国古代的农业、天文学等的发展作出了重大贡献。其中的一些脍炙人口的趣味小问题也让我们在探究中发现数学之美。
1. 鸡兔同笼问题
鸡兔同笼问题是我国古代一道经典的数学趣题。它记载于大约1500年前的《孙子算经》中,书中是这样描述的:"今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?"这句话的意思是:若干只鸡兔同在一个笼子里,从上面数,有三十五个头:从下面数,有九十四只脚。求笼中各有几只鸡和兔?
用解法一(假设法):已知鸡兔共有35只,如果把兔子的两只前脚用绳子捆起来,即,将兔子看做两只脚的鸡,鸡兔总的脚数是35×2=70(只),比题中说的94只要少24只。可知这24只脚是兔子,因此有兔子24÷2=12(只)。所以有鸡35-12=23(只)。 解:
假设全是鸡: 35×2=70(只)
比总脚数少:94-70=24(只)
它们脚数的差:4-2=2(只)
因此有兔子:24÷2=12(只)
鸡:35-12=23(只)
解法二(方程法):解:
设兔有x只,则鸡有35-x只。
4x+2(35-x)=94
2x=24
x=12
35-12=23(只)
故:有鸡23只,兔12只。
除此之外还有 解法3:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)
=鸡的只数
总只数-鸡的只数=兔的只数
解法4( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数) =兔的只数
总只数-兔的只数=鸡的只数
解法5:总脚数÷2-总头数=兔的只数
总只数-兔的只数=鸡的只数
解法4: 鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2 兔的只数=鸡兔总只数-鸡的只数6
解法7兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2 鸡的只数=鸡兔总只数-兔总只数
一个简单的鸡兔同笼问题却能有如此多的解法,是不是很奇妙呢? 通过对一个简单的数学问题的剖析,你是否从中发现了探索的乐趣呢?在探索的过程中你是否体味到数学解题思想的变幻之美呢?
2.百鸡问题
百鸡问题记载于中国古代约5-6世纪成书的《张丘建算经》中,该问题导致的三元不定方程组开创了"一问多答的先例"这是过去中国古算书书中所没有的,体现了中国数学的发展。
书中写道:今有鸡翁一,值钱伍;鸡母一,值钱三;鸡鶵三,值钱一。凡百钱买鸡百只,问鸡翁、母、鶵各几何?
意思是:公鸡每只值5文钱,母鸡每只值三文钱,而3 只小鸡值1 文钱。现在用100 文钱买100 只鸡,问:这100 只鸡中公鸡、母鸡和小鸡各有多少只?,
原书的答案是:"答曰:鸡翁四,值钱二十;鸡母十八,值钱五十四;鸡鶵七十八,值钱二十六。又答:鸡翁八,值钱四十;鸡 母十一,值钱三十三,鸡鶵八十一,值钱二十七。又答:鸡翁十二,值钱六十;鸡母四、值钱十二;鸡鶵八十 四,值钱二十八。 "
这个问题流传很广,解法很多,但从现代数学观点来看,它实际是一个求不定方成整数解的问题。
解:设公鸡、母鸡、小鸡分别为x、y、z只。
则,由题意知: ①x+y+z =100
②5x+3y+(1/3)z =100
令②×3-①得: 7x+4y=100'
所以y=(100-7x)/4=25-2x+x/4
令x/4=t, (t为整数)所以x=4t
把x=4t代入7x+4y=100得到:y=25-7t
更多推荐
数学,问题,中国,鸡兔,脚数
发布评论