2024年4月3日发(作者:重庆离散数学试卷及答案)

高中《正弦和余弦定理》数学教案4篇

教案是讲课的前提,是讲好课的基础,教案则备课的具体表现形式。它可以反

映教师在整个教学中的总体设计和思路尤其是教学态度认真与否的重要尺度。

以下是小编为大家整理的高中《正弦和余弦定理》数学教案,感谢您的欣赏。

高中《正弦和余弦定理》数学教案1

教学目标

进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问

题,如判断三角形的形状,证明三角形中的三角恒等式.

教学重难点

教学重点:熟练运用定理.

教学难点:应用正、余弦定理进行边角关系的相互转化.

教学过程

一、复习准备:

1.写出正弦定理、余弦定理及推论等公式.

2.讨论各公式所求解的三角形类型.

二、讲授新课:

1.教学三角形的解的讨论:

①出示例1:在△ABC中,已知下列条件,解三角形.

分两组练习→讨论:解的个数情况为何会发生变化

②用如下图示分析解的情况.(A为锐角时)

②练习:在△ABC中,已知下列条件,判断三角形的解的情况.

2.教学正弦定理与余弦定理的活用:

①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦.

分析:已知条件可以如何转化→引入参数k,设三边后利用余弦定理求角.

②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型.

分析:由三角形的什么知识可以判别→求角余弦,由符号进行判断

③出示例4:已知△ABC中,,试判断△ABC的形状.

分析:如何将边角关系中的边化为角→再思考:又如何将角化为边

第 1 页 共 11 页

3.小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.

三、巩固练习:

3.作业:教材P11B组1、2题.

高中《正弦和余弦定理》数学教案2

一)教材分析

(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重

要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有

关三角形问题的有力工具。

(2)重点、难点。

重点:正余弦定理的证明和应用

难点:利用向量知识证明定理

(二)教学目标

(1)知识目标:

①要学生掌握正余弦定理的推导过程和内容;

②能够运用正余弦定理解三角形;

③了解向量知识的应用。

(2)能力目标:提高学生分析问题、解决问题的能力。

(3)情感目标:使学生领悟到数学来源于实践而又作用于实践,培养学生的学

习数学的兴趣。

(三)教学过程

教师的主要作用是调控课堂,适时引导,引导学生自主发现,自主探究。使

学生的综合能力得到提高。

教学过程分如下几个环节:

教学过程课堂引入

1、定理推导

2、证明定理

3、总结定理

4、归纳小结

第 2 页 共 11 页


更多推荐

余弦定理,三角形,学生,教学