2024年3月23日发(作者:数学试卷未订正检讨书)

第三章 函数极限 5 无穷小量与无穷大量(习题)

1、证明:

(1)2x-x=O(x) (x→0);(2)xsin

x=O(x

) (x→0

+

);(3)

1+x−1=o(1) (x→0);

(4)(1+x)

n

=1+nx+o(x) (x→0) (n为正整数);(5)2x

3

-x

2

=O(x

3

) (x→∞);

(6)o(g(x))±o(g(x))=o(g(x)) (x→x

0

);(7)o(g

1

(x))·o(g

2

(x))=o(g

1

(x)·g

2

(x)) (x→x

0

).

证:(1)∵lim

(2)∵lim

+

x→0

x→0

2x−x

2

x

x→0

xsin

x

3

x

2

2

3

2

=lim

(2−x)=2;∴2x-x

2

=O(x) (x→0).

x→0

sin

x

x

=lim

+

x→0

=1;∴xsin

x=O(x

) (x→0

+

).

3

2

(3)∵lim

(

1+x−1)= 0;∴

1+x−1=o(1) (x→0).

(4)∵lim

x→0

(1+x)−1−nx

x

n

x→0

=lim

x

n

+nx

n−1

+

n

n−1

n−2

x+⋯n(n−1)x

2

+nx+1−1−nx

2

x→0

n

n−1

2

x

=lim

x

n−1

+nx

n−2

+x

n−3

+⋯n

n−1

x =0;

∴(1+x)

n

-1-nx = o(x) (x→0);∴(1+x)

n

=1+nx+o(x) (x→0).

(5)∵lim

2x

3

−x

2

x

3

x→∞

=lim

2−

x

=2;∴2x

3

-x

2

=O(x

3

) (x→∞).

x→∞

x→x

0

1

(6)设函数f(x)=o(g(x)) (x→x

0

),则lim

∵lim

更多推荐

大量,存在,下列