2024年4月17日发(作者:黄冈名师六下数学试卷)
盐城市2023届高三年级第三次模拟考试
数学参考答案与评分标准
1.C
5.C
13.
y2
2.A
6.D
(或
y2
,
3.D
7.A
或
xy10
,
4.B
8.B
或
xy10
,
或
x7y70
,或
x7y70
,写出一个即可)
14.
(0,12)
15.
2
5
16.
(1,)
2
4
b
n
1
3
b
n
a
n
t
1
17.(1)证明:由
得
a
n
1
b
n
1
(
a
n
b
n
)
,·····················2分
2
4
a
n
1
3
a
n
b
n
t
又
a
1
b
1
1
0
,∴
a
n
b
n
0
,∴
所以
a
n
b
n
是首项为1公比为
a
n
1
b
n
1
1
,
a
n
b
n
2
1
的等比数列.················································4分
2
(2)解:(法一)∵
a
n
是递增数列,∴
a
n
1
a
n
0
对任意
nN*
恒成立,
∵
4
a
n
1
3
a
n
b
n
t
,∴
4(
a
n
1
a
n
)
(
a
n
b
n
)
t
,
则
(a
n
b
n
)t0
对任意
nN*
恒成立,
即
ta
n
b
n
对任意
nN*
恒成立,·····························································6分
11
由(1)知
a
n
b
n
()
n
1
,∴
t
()
n
1
对任意
nN*
恒成立,························8分
22
1
因为当
n1
时
()
n
1
的最大值为1,
2
所以
t1
,即实数
t
的取值范围为
(1,)
.······················································10分
4
b
n
1
3
b
n
a
n
t
(法二)
得
4(
a
n
1
b
n
1
)
4(
a
n
b
n
)
2
t
,
4
a
3
a
b
t
nn
n
1
(
n
1)
1
t
,
t
,所以
a
n
b
n
1
2
2
111
t
又由(
1
)知
a
n
b
n
()
n
1
,所以
a
n
()
n
(
n
1)
,
····························6
分
2224
即
a
n
1
b
n
1
a
n
b
n
数学参考答案第1页(共6页)
因为
a
n
是递增数列,所以
a
n
1
a
n
对任意
nN*
恒成立
.
11
t
11
t
所以
()
n
1
n
()
n
(
n
1)
,
224224
1
t
1
所以
()
n
1
0
,所以
t
()
n
1
,
·························································8
分
242
1
因为当
n1
时
()
n
1
的最大值为1,
2
所以
t1
,即实数
t
的取值范围为
(1,)
.······················································10分
18.解:(1)取
AA
1
中点
O
,连接
OD
、
OC
,
因为四边形ABB
1
A
1
为正方形,点D为BB
1
的中点,点O为
AA
1
的中点,
所以
AA
1
OD
,
又∵AA
1
⊥CD,
CDODD
,
CD
平面
OCD
,
OD
平面
OCD
,
∴
AA
1
平面
OCD
,···········································································3分
又∵
OC
平面
OCD
,
∴
AA
1
OC
,
又点O为
AA
1
的中点,
∴
CACA
1
.·······················································································6分
(2)因为平面AA
1
C
1
C⊥平面ABB
1
A
1
,
平面AA
1
C
1
C∩平面ABB
1
A
1
=AA
1
,
OCAA
1
,
OC
平面AA
1
C
1
C,
∴
OC
平面ABB
1
A
1
,·········································································8分
以
{OA,OD,OC}
为基底建立如图所示空间直角坐标系,则
C(0,0,3)
,
A
1
(1,0,0)
,
D(0,2,0)
,
则
A
1
D(1,2,0)
,
A
1
C(1,0,3)
,
设
n(x,y,z)
为平面
A
1
CD
的一个法向量,
n
AD
x
2
y
0
1
则
,
n
A
1
C
x
3
z
0
令
x6
,得
y3
,
z23
,
n(6,3,23)
,································10分
数学参考答案第2页(共6页)
由
OC
平面ABB
1
A
1
得平面A
1
DB
1
的一个法向量为
OC(0,0,3)
,
OC
n
23
32
则
cos
OC
,
n
19
,
19
|
OC
||
n
|
57
3
2
由图知二面角C-A
1
D-B
1
为钝二面角,故其余弦值为
19
.·················12分
19
19.
解:
(1)
提出假设
H
0
:“
奥数迷
”
与性别无关.
···········································1
分
n
(
ad
bc
)
2
100(24
28
12
36)
2
25
2
1.04
,
···········3
分则
K
(
a
b
)(
c
d
)(
a
c
)(
b
d
)60
40
36
6424
6.635)0.01
,而
1.046.635
,
因为
P(K
2
更多推荐
闯关,把握,二面角,性别,女生,数学,参考答案
发布评论