2024年4月4日发(作者:高考数学试卷结构分值)

七年级下册数学知识点总结(人教版最新

最全)

第五章 相交线与平行线

一、相交线

相交线是指两条直线只有一个公共点,这个公共点叫做两

条直线的交点。例如,直线AB和CD相交于点O。

对顶角是指两条直线相交所形成的对顶角,顶点相同,角

的两边互为反向延长线。满足这种关系的角互为对顶角,对顶

角相等。对顶角是成对出现的。

邻补角是指有一条公共边,角的另一边互为反向延长线。

满足这种关系的两个角互为领补角。与补角相比,邻补角既要

满足数量关系又要满足位置关系。

二、垂线

垂直是指两条直线相交所成的四个角中有一个角是直角时,

这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,

它们的交点叫做垂足。要判断两条直线互相垂直,需要找到两

条直线相交时四个交角中一个角是直角。

垂线的表示可以用“⊥”和直线字母表示垂直。例如,如图,

a、b互相垂直,O叫做垂足,a叫做b的垂线,b也叫做a的

垂线。则记为:a⊥b或XXX;若要强调垂足,则记为:a⊥b,

垂足为O。

垂线的书写形式如图,当直线AB与CD相交于O点,

∠AOD=90°时,AB⊥CD,垂足为O。反之,若直线AB与

CD垂直,垂足为O,那么,∠AOD=90°。

垂线的画法如图,已知直线l和l上的一点A,作l的垂

线。则所画直线AB是过点A的直线l的垂线。需要用到的工

具有直尺和三角板。

垂线的性质有两条:同一平面内,过一点有且只有一条直

线与已知直线垂直;连接直线外一点与直线上各点的所有线段


更多推荐

直线,垂直,垂线,满足,补角,相交,关系,叫做