2024年3月25日发(作者:2022年泰兴中考二模数学试卷)
高一数学教案范文5篇
对于高一的学生来说,高中数学还是有一定的难度的,老师应该怎
么制作教案,带领他们尽快适应高中数学呢?今天在这给大家整理了
(高一数学)教案大全,接下来随着一起来看看吧!
高一数学教案(一)
教学目标:
1.进一步理解对数函数的性质,能运用对数函数的相关性质解决对
数型函数的常见问题.
2.培养学生数形结合的思想,以及分析推理的能力.
教学重点:
对数函数性质的应用.
教学难点:
对数函数的性质向对数型函数的演变延伸.
教学过程:
一、问题情境
1.复习对数函数的性质.
2.回答下列问题.
(1)函数y=log2x的值域是 ;
(2)函数y=log2x(x≥1)的值域是 ;
(3)函数y=log2x(0
3.情境问题.
函数y=log2(x2+2x+2)的定义域和值域分别如何求呢?
二、学生活动
探究完成情境问题.
三、数学运用
例1 求函数y=log2(x2+2x+2)的.定义域和值域.
练习:
(1)已知函数y=log2x的值域是[-2,3],则x的范围是
________________.
(2)函数 ,x(0,8]的值域是 .
(3)函数y=log (x2-6x+17)的值域 .
(4)函数 的值域是_______________.
例2 判断下列函数的奇偶性:
(1)f (x)=lg (2)f (x)=ln( -x)
例3 已知loga 0.751,试求实数a 取值范围.
例4 已知函数y=loga(1-ax)(a0,a≠1).
(1)求函数的定义域与值域;
(2)求函数的单调区间.
练习:
1.下列函数(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域为R的
有 (请写出所有正确结论的序号).
2.函数y=lg( -1)的图象关于 对称.
更多推荐
性质,教学,函数,问题,泰兴,结论
发布评论