2024年3月25日发(作者:2022年泰兴中考二模数学试卷)

高一数学教案范文5篇

对于高一的学生来说,高中数学还是有一定的难度的,老师应该怎

么制作教案,带领他们尽快适应高中数学呢?今天在这给大家整理了

(高一数学)教案大全,接下来随着一起来看看吧!

高一数学教案(一)

教学目标:

1.进一步理解对数函数的性质,能运用对数函数的相关性质解决对

数型函数的常见问题.

2.培养学生数形结合的思想,以及分析推理的能力.

教学重点:

对数函数性质的应用.

教学难点:

对数函数的性质向对数型函数的演变延伸.

教学过程:

一、问题情境

1.复习对数函数的性质.

2.回答下列问题.

(1)函数y=log2x的值域是 ;

(2)函数y=log2x(x≥1)的值域是 ;

(3)函数y=log2x(0

3.情境问题.

函数y=log2(x2+2x+2)的定义域和值域分别如何求呢?

二、学生活动

探究完成情境问题.

三、数学运用

例1 求函数y=log2(x2+2x+2)的.定义域和值域.

练习:

(1)已知函数y=log2x的值域是[-2,3],则x的范围是

________________.

(2)函数 ,x(0,8]的值域是 .

(3)函数y=log (x2-6x+17)的值域 .

(4)函数 的值域是_______________.

例2 判断下列函数的奇偶性:

(1)f (x)=lg (2)f (x)=ln( -x)

例3 已知loga 0.751,试求实数a 取值范围.

例4 已知函数y=loga(1-ax)(a0,a≠1).

(1)求函数的定义域与值域;

(2)求函数的单调区间.

练习:

1.下列函数(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域为R的

有 (请写出所有正确结论的序号).

2.函数y=lg( -1)的图象关于 对称.


更多推荐

性质,教学,函数,问题,泰兴,结论