2023年12月6日发(作者:2022春考数学试卷山东)

1、毕达哥拉斯

毕达哥拉斯(Pythagoras,572 BC—497 BC)古希腊数学家、哲学家。无论是解说外在物质世界,还是描写内在精神世界,都不能没有数学!最早悟出万事万物背后都有数的法则在起作用的,是生活在2500年前的毕达哥拉斯。毕达哥拉斯出生在爱琴海中的萨摩斯岛(今希腊东部小岛),自幼聪明好学,曾在名师门下学习几何学、自然科学和哲学。以后因为向往东方的智慧,经过万水千山来到巴比伦、印度和埃及(有争议),吸收了阿拉伯文明和印度文明(公元前480年)的文化。

2、欧几里得

欧几里得(希腊文:Εσκλειδης ,公元前325年—公元前265年),古希腊数学家,被称为“几何之父”。他活跃于托勒密一世(公元前323年-公元前283年)时期的亚历山大里亚,他最著名的著作《几何原本》是欧洲数学的基础,提出五大公式,欧几里得几何,被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。

3、阿基米德(古希腊文:Αρτιμήδης)(公元前287年—公元前212年),伟大的古希腊哲学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人。出生于西西里岛的叙拉古的一个贵族家庭。他从小就善于思考,喜欢辩论。早年游历过古埃及,曾在亚历山大城学习。据说他就在亚历山大里亚时期发明了阿基米德式螺旋抽水机。后来阿基米德成为兼数学家与力学家的伟大学者,并且享有“力学之父”的美称。阿基米德流传于世的数学著作有10余种,多为希腊文手稿。

4、高斯德国著名数学家、物理学家、天文学家、大地测量学家。和牛顿、阿基米德,被誉为有史以来的三大数学家,是近代数学奠基者之一,18岁时发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。1799年高斯于黑尔姆施泰特大学因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。高斯的肖像已经被印在从1989年至2001年流通的10元面值德国马克的纸币上。

5、弗里德·威廉·莱布尼茨(Gottfried Wilhelm Leibniz,1646年—1716年),德国哲学家、数学家,和牛顿先后独立发明了微积分。有人认为,莱布尼茨最大的贡献不是发明微积分,而是微积分中使用的数学符号,因为牛顿使用的符号普遍认为比莱布尼茨的差。他所涉及的领域及法学、力学、光学、语言学等40多个范畴,被誉为十七世纪的亚里士多德。

6、希尔伯特,D.(Hilbert,David,1862~1943)德国著名数学家。 他于1900年8月8日在巴黎第二届国际数学家大会上,提出了新世纪数学家应当努力解决的23个数学问题,被认为是20世纪数学的制高点,对这些问题的研究有力推动了20世纪数学的发展,在世界上产生了深远的影响。希尔伯特领导的数学学派是19世纪末20世纪初数学界的一面旗帜,希尔伯特被称为“数学界的无冕之王”。 (著名的哥德巴赫猜想也是问题之一,以陈景润为代表的中国数学家获得了重大突破,但还没有彻底解决。)

7、格奥尔格·康托尔(Cantor,Georg Ferdinand Ludwig Philipp,1845.3.3-1918.1.6)德国数学家,集合论的创始人。生于俄国列宁格勒(今俄罗斯圣彼得堡)。父亲是犹太血统的丹麦商人,母亲出身艺术世家。1856年全家迁居德国的法兰克福。先在一所中学,后在威斯巴登的一所大学预科学校学习。

罗素(英国哲学家、数学家、逻辑学家)即伯特兰·罗素。

8、伯特兰·罗素(Bertrand Russell,1872—1970)是二十世纪英国哲学家、数学家、逻辑学家、历史学家,无神论或者不可知论者,也是上世纪西方最著名、影响最大的学者和和平主义社会活动家之一,罗素也被认为是与弗雷格、维特根斯坦和怀特海一同创建了分析哲学。他与怀特海合著的《数学原理》对逻辑学、数学、集合论、语言学和分析哲学有着巨大影响。1950年,罗素获得诺贝尔文学奖,以表彰其“多样且重要的作品,持续不断的追求人道主义理想和思想自由”。

9、克莱因生于德国杜塞多夫。他在埃尔朗根、慕尼黑和莱比锡当过教授,最后到了哥廷根,教授数学。他的主要课题是非欧几何、群论和函数论。他的将各种几何用它们的基础对称群来分类的爱尔兰根纲领的发布影响深远:是当时很多数学的一个综合。 著作有高观点下的初等数学他死于哥廷根。

10、黎曼德国数学家,对数学分析和微分几何做出了重要贡献,其中一些为广义相对论的发展铺平了道路。他的名字出现在黎曼ζ函数,黎曼积分,黎曼引理,黎曼流形,黎曼映照定理,黎曼-希尔伯特问题,黎曼思路回环矩阵和黎曼曲面中。他初次登台作了题为“论作为几何基础的假设”的演讲,开创了黎曼几何,并为爱因斯坦的广义相对论提供了数学基础。他在1857年升为格丁根大学的编外教授,并在1859年狄利克雷去世后成为正教授。

11、费马 皮耶·德·费马(Pierre de Fermat)是一个17世纪的法国律师,也是一位业余数学家。之所以称业余,是由于皮耶·德·费马具有律师的全职工作。根据法文实际发音与英文,他的姓氏也常译为“费尔玛”(注意“玛”字)。费马最后定理在中国习惯称为费马大定理,西方数学界原名“最后”的意思是:其它猜想都证实了,这是最后一个。著名的数学史学家贝尔(E.

T. Bell)在20世纪初所撰写的著作中,称皮耶·德·费马为”业余数学家之王“。贝尔深信,费马比皮耶·德·费马同时代的大多数专业数学家更有成就。17世纪是杰出数学家活跃的世纪,而贝尔认为费马是17世纪数学家中最多产的明星。

12、牛顿牛顿(1643(格里历)年1月4日—1727年3月21日)爵士,英国皇家学会会员,英国伟大的物理学家、数学家、天文学家、自然哲学家,百科全书式的“全才”,著有《自然哲学的数学原理》、《光学》、《二项式定理》和《微积分》。

他在1687年发表的论文《自然定律》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心说提供了强有力的理论支持,并推动了科学革命。

在力学上,牛顿阐明了动量和角动量守恒的原理。在光学上,他发明了反射望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。

在数学上,牛顿与戈特弗里德·威廉·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究作出了贡献。[1]

13、约瑟夫·拉格朗日(Joseph-Louis Lagrange 1736~1813)全名为约瑟夫·路易斯·拉格朗日,法国著名数学家、物理学家。1736年1月25日生于意大利都灵,1813年4月10日卒于巴黎。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。

14、奥古斯丁·路易·柯西于1789年8月21日出生于高级官员家庭。大约在1805年时,他就读于巴黎综合理工学院。他在数学方面有杰出的表现,被任命为法国科学院院士等大学的重要职位。1830年柯西拒绝效忠新国王,并自行离开了法国。大约在十年后,他担任了巴黎综合理工学院教授。在1848年时,在巴黎大学担任教授。柯西一生写了大约八百篇论文,这些论文编成《柯西著作全集》,由1882年开始出版。


更多推荐

数学家,数学,世纪