2023年12月12日发(作者:南京 二模数学试卷)
1
小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日
第一章:植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距+1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
第二章:数学方正问题
学生排队,士兵列队,横着排叫做行,竖着排叫做列。如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。
2
小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日
核心公式:
1.方阵总人数=最外层每边人数的平方(方阵问题的核心)
2.方阵最外层每边人数=(方阵最外层总人数÷4)+1
3.方阵外一层总人数比内一层总人数多2
4.去掉一行、一列的总人数=去掉的每边人数×2-1
例1 学校学生排成一个方阵,最外层的人数是60人,问这个方阵共有学生多少人?
A.256人 B.250人 C.225人 D.196人 (2002年A类真题)
解析:方阵问题的核心是求最外层每边人数。
根据四周人数和每边人数的关系可以知:
每边人数=四周人数÷4+1,可以求出方阵最外层每边人数,那么整个方阵队列的总人数就可以求了。
方阵最外层每边人数:60÷4+1=16(人)
整个方阵共有学生人数:16×16=256(人)。
所以,正确答案为A。
例2 参加中学生运动会团体操比赛的运动员排成了一个正方形队列。如果要使这个正方形队列减少一行和一列,则要减少33人。问参加团体操表演的运动员有多少人?
分析 如下图表示的是一个五行五列的正方形队列。从图中可以看出正方形的每行、每列人数相等;最外层每边人数是5,去一行、一列则一共要去9人,因而我们可以得到如下公式: 3
小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日
去掉一行、一列的总人数=去掉的每边人数×2-1
· · · · ·
· · · · ·
· · · · ·
· · · · ·
· · · · ·
解析:方阵问题的核心是求最外层每边人数。
原题中去掉一行、一列的人数是33,则去掉的一行(或一列)人数=(33+1)÷2=17
方阵的总人数为最外层每边人数的平方,所以总人数为17×17=289(人)
下面几道习题供大家练习:
1. 小红把平时节省下来的全部五分硬币先围成个正三角形,正好用完,后来又改围成一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用5枚硬币,则小红所有五分硬币的总价值是:
A.1元 B.2元 C.3元 D.4元 (2005年中央真题)
2. 某仪仗队排成方阵,第一次排列若干人,结果多余100人;第二次比第一次每行、每列都增加3人,又少29人。仪仗队总人数为多少?
答案:1.C 2. 500人
第三章:容斥原理
4
小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日
容斥原理
在计数时,必须注意无一重复,无一遗漏。为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
高等数学容斥原理公式
|A1∪A2∪...∪Am|=∑(1<=i<=m)|Ai| - ∑(1≤i ∑(1<=i 两个集合的容斥关系公式:A∪B = A+B - A∩B (∩:重合的部分) 三个集合的容斥关系公式:A∪B∪C = A+B+C - A∩B - B∩C - C∩A +A∩B∩C 详细推理如下: 1、 等式右边改造 = {[(A+B - A∩B)+C - B∩C] - C∩A }+ A∩B∩C 2、文氏图分块标记如右图图:1245构成A,2356构成B,4567构成C 3、等式右边()里指的是下图的1+2+3+4+5+6六部分: 那么A∪B∪C还缺部分7。 4、等式右边[]号里+C(4+5+6+7)后,相当于A∪B∪C多加了4+5+6三部分, 减去B∩C(即5+6两部分)后,还多加了部分4。 5、等式右边{}里减去C∩A (即4+5两部分)后,A∪B∪C又多减了部分5, 则加上A∩B∩C(即5)刚好是A∪B∪C。 编辑本段容斥原理1 如果被计数的事物有A、B两类,那么,A类B类元素个数总和= 属于A类元素个数+ 属于B类元素个数—既是A类又是B类的元素个数。(A∪B = A+B - A∩B) 5 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 例1 一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人? 分析 依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A类元素”,“语文得满分”称为“B类元素”,“语、数都是满分”称为“既是A类又是B类的元素”,“至少有一门得满分的同学”称为“A类和B类元素个数”的总和。 答案:15+12-4=23 试一试 电视台向100人调查前一天收看电视的情况,有62人看过2频道,34人看过8频道,其中11人两个频道都看过。两个频道都没看过的有多少人? 100-(62+34-11)=15 编辑本段容斥原理2 如果被计数的事物有A、B、C三类,那么,A类和B类和C类元素个数总和= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。(A∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C) 例1: 某校六⑴班有学生45人,每人在暑假里都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人? 分析:参加足球队的人数25人为A类元素,参加排球队人数22人为B类元素,参加游泳队的人数24人为C类元素,既是A类又是B类的为足球排球都参加的12人,既是B类又C类的为足球游泳都参加的9人,既是C类又是A类的为排球游泳都参加的8人,三项都参加的是A类B类C类的总和设为X。注意:这个题说的每人都参加了体育训练队,所以这个班的总人数即为A类B类和C类的总和。 6 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 答案:25+22+24-12-9-8+X=45 解得X=3 例2:在1到1000的自然数中,能被3或5整除的数共有多少个?不能被3或5整除的数共有多少个? 分析:显然,这是一个重复计数问题(当然,如果不怕麻烦你可以分别去数3的倍数,5的倍数)。我们可以把“能被3或5整除的数”分别看成A类元素和B类元素,能“同时被3或5整除的数(15的倍数)”就是被重复计算的数,即“既是A类又是B类的元素”。求的是“A类或B类元素个数”。现在我们还不能直接计算,必须先求出所需条件。1000÷3=333„„1,能被3整除的数有333个(想一想,这是为什么?)同理,可以求出其他的条件。 例3:分母是1001的最简分数一共有多少个? 分析:这一题实际上就是找分子中不能与1001进行约分的数。由于1001=7×11×13,所以就是找不能被7,11,13整除的数。 解答:1~1001中,有7的倍数1001/7 = 143 (个);有11的倍数1001/11 = 91 (个),有13的倍数1001/13 = 77 (个);有7´11=77的倍数1001/77 = 13 (个),有7´13=91的倍数1001/91 = 11 (个),有11´13=143的倍数1001/43 = 7 (个).有1001的倍数1个。 由容斥原理知:在1~1001中,能被7或11或13整除的数有(143+91+77)-(13+11+7)+1=281(个),从而不能被7、11或13整除的数有1001-281=720(个).也就是说,分母为1001的最简分数有720个。 例4:某个班的全体学生在进行了短跑、游泳、投掷三个项目的测试后,有4名学生在这三个项目上都没有达到优秀,其余每人至少有一项达到了优秀,达到了优秀的这部分学生情况如下表: 短跑 游泳 投掷 短跑、游泳 短跑、投掷 游泳、投掷 短跑、游泳、投掷 1 7 1 8 1 5 6 6 5 2 求这个班的学生共有多少人? 分析:这个班的学生数,应包括达到优秀和没有达到优秀的。 试一试:一个班有42人,参加合唱队的有30人,参加美术组的有25人,有57 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 人什么都没有参加,求两种都参加的有多少人? 例5:在一根长的木棍上有三种刻度线,第一种刻度线将木棍分成10等份,第二种将木棍分成12等份,第三种将木棍分成15等份。如果沿每条刻度线将木棍锯断,木棍总共被锯成多少段? 分析:很显然,要计算木棍被锯成多少段,只需要计算出木棍上共有多少条不同的刻度线,在此基础上加1就是段数了。 若按将木棍分成10等份的刻度线锯开,木棍有9条刻度线。在此木棍上加上将木棍分成12等份的11条刻度线,显然刻度线有重复的,如5/10和6/12都是1/2。同样再加上将木棍分成15等份的刻度线,也是如此。所以,我们应该按容斥原理的方法来解决此问题。用容斥原理的那一个呢?想一想,被计数的事物有那几类?每一类的元素个数是多少? 解答 解一:(10,12,15)=60,设木棍60厘米 60÷10=6厘米,60÷12=5厘米,60÷15=4厘米 10等分的为第一种刻度线,共10-1=9条 12等分的为第二种刻度线,共12-1=11条 15等分的为第三种刻度线,过15-1=14条 第一种与第二种刻度线重合的(6,5)=30,60÷30-1=2-1=1条 第一种与第三种刻度线重合的(6,4)=12,60÷12-1=5-1=4条 第二种与第三种刻度线重合的(5,4)=20,60÷20-1=3-1=2条 三种刻度线重合的没有,(6、5、4)=60 因此,共有刻度线9+11+14-1-4-2=27条,木棍总共被锯成27+1=28段。 解二:总长看成单位1分别分成10、12、15段。1/10与1/12的最小公倍数1/2,1/10与1/15的最小公倍数1/5,1/12与1/15的最小公倍数1/3,1/10,1/12和1/15的最小公倍数为1,有10+12+15-(2+5+3)+1=28 解三: 10、12、15的最小公倍数是60,假设木棍就是长60, 8 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 1、那么,分成10等份的每份6,刻度就是 0,6,12,18,24,30,36,42,48,54,60 2、分成12等分的每份就是5, 0,5,10,15,20,25,30,35,40,45,50,55,60 3、分成15等分的每份就是4, 0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60 4、把相同刻度的合并,就是有刻度如下: 0,4,5,6,8,10,12,15,16,18,20,24,25,28,30,32,35,36,40,42,44,45,48,50,52,54,55,56,60 第四章:最不利原则 在日常生活和生产中,我们常常会遇到求最大值或最小值的问题,解答这类问题,常常需要从最不利的情况出发分析问题,这就是最不利原则,下面通过具体例子说明最不利原则以及它的应用。 例1、口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球各20个。问:一次最少摸出几个球,才能保证至少有4个小球颜色相同? 分析与解:如果碰巧一次取出的4个小球的颜色都相同,就回答是“4”,那么显然不对,因为摸出的4个小球的颜色也可能不相同。回答是“4”是从最“有利”的情况考虑的,但为了“保证至少有4个小球颜色相同”,就要从最“不利”的情况考虑。如果最不利的情况都满足题目要求,那么其它情况必然也能满足题目要求。 “最不利”的情况是什么呢?那就是我们摸出3个红球、3个黄球和3个蓝球,此时三种颜色的球都是3个,却无4个球同色。这样摸出的9个球是“最不利”的情形。这时再摸出一个球,无论是红、黄或蓝色,都能保证有4个小球颜色相同。所以回答应是最少摸出10个球。 由例1看出,最不利原则就是从“极端糟糕”的情况考虑问题。如果例1的问题是“最少摸出几个球就可能有4个球颜色相同”,那么我们就可以根据最有利的情况回答“4个”。现在的问题是“要保证有4个小球的颜色相同”,这“保证”二字就要求我们必须从最不9 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 利的情况分析问题。 例2、口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球共18个。其中红球3个、黄球5个、蓝球10个。现在一次从中任意取出n个,为保证这n个小球至少有5个同色,n的最小值是多少? 分析与解:与例1类似,也要从“最不利”的情况考虑。最不利的情况是取了3个红球、4个黄球和4个蓝球,共11个。此时袋中只剩下黄球和蓝球,所以再取一个球,无论是黄球还是蓝球,都可以保证有5个球颜色相同。因此所求的最小值是12。 例3一排椅子只有15个座位,部分座位已有人就座,乐乐来后一看,他无论坐在哪个座位,都将与已就座的人相邻。问:在乐乐之前已就座的最少有几人? 分析与解:将15个座位顺次编为1~15号。如果2号位、5号位已有人就座,那么就座1号位、3号位、4号位、6号位的人就必然与2号位或5号位的人相邻。根据这一想法,让2号位、5号位、8号位、11号位、14号位都有人就座,也就是说,预先让这5个座位有人就座,那么乐乐无论坐在哪个座位,必将与已就座的人相邻。因此所求的答案为5人。 例4一把钥匙只能开一把锁,现有10把钥匙和10把锁,最少要试验多少次就一定能使全部的钥匙和锁相匹配? 分析与解:从最不利的情形考虑。用10把钥匙依次去试第一把锁,最不利的情况是试验了9次,前8次都没打开,第9次无论打开或没打开,都能确定与这把锁相匹配的钥匙(若没打开,则第10把钥匙与这把锁相匹配)。同理,第二把锁试验8次„„第九把锁只需试验1次,第十把锁不用再试(为什么?)。共要试验 9+8+7+„+2+1=45(次)。 所以,最少试验45次就一定能使全部的钥匙和锁相匹配。 例5在一副扑克牌中,最少要取出多少张,才能保证取出的牌中四种花色都有? 分析与解:一副扑克牌有大、小王牌各1张,“红桃”、“黑桃”、“方块”、“梅花”四种花色各13张,共计有54张牌。最不利的情形是:取出四种花色中的三种花色的牌各13张,再加上2张王牌。这41张牌中没有四种花色。剩下的正好是另一种花色的13张牌,再抽1张,四种花色都有了。因此最少要拿出42张牌,才能保证四种花色都有。 例6若干箱货物总重19.5吨,每箱重量不超过353千克,今有载重量为10 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 1.5吨的汽车,至少需要多少辆,才能确保这批货物一次全部运走? 分析与解:汽车的载重量是1.5吨。如果每箱的重量是300千克(或1500的小于353的约数),那么每辆汽车都是满载,即运了1.5吨货物。这是最有利的情况,此时需要汽车 19.5÷1.5=13(辆)。 如果装箱的情况不能使汽车满载,那么13辆汽车就不能把这批货物一次运走。为了确保把这批货物一次运走,需要从最不利的装箱情况来考虑。最不利的情况就是使每辆车运得尽量少,即空载最多。因为353×4<1500,所以每辆车至少装4箱。每箱300千克,每车能装5箱。如果每箱比300千克略多一点,比如301千克,那么每车就只能装4箱了。此时,每车载重 301×4=1204(千克), 空载1500-1204=296(千克)。注意,这就是前面所说的“最不利的情况”。19500÷1204=16„„236,也就是说,19.5吨货物按最不利的情况,装16车后余236千克,因为每辆车空载296千克,所以余下的236千克可以装在任意一辆车中。 综上所述,16辆车可确保将这批货物一次运走。 练习28 1.口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球各20个。问:一次最少摸出几个,才能保证至少有5个小球颜色相同? 2.口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球共20个,其中红球4个、黄球6个、蓝球10个。问:一次最少取出几个,才能保证至少有6个小球颜色相同? 3.一排椅子共有18个座位,部分座位已有人就座,乐乐来后一看,他无论坐在哪个座位,都将与已经就座的人相邻。问:在乐乐之前已就座的最少有几人? 4.一张圆桌有12个座位,部分座位已有人就座,乐乐来后一看,他无论坐在哪个座位,都将与已经就座的人相邻。问:在乐乐之前已就座的最少有几人? 5.口袋里有三种颜色的筷子各10根。问(1)至少取几根才能保证三种颜色的筷子都取到?(2)至少取几根才能保证有颜色不同的两双筷子? (3)至少取几根才能保证有颜色相同的两双筷子? 6.一个布袋里有红色、黄色、黑色袜子各20只。问:最少要拿多少只袜子才能保证其中至少有2双颜色不相同的袜子? 7.一把钥匙只能开一把锁,现有10把锁和其中的9把钥匙,要保证这9把钥匙都配上锁,至少需要试验多少次? 11 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 第五章:中国剩余定理 秦朝末年,楚汉相争。一次,韩信将1500名将士与楚王大将李锋交战。苦战一场,楚军不敌,败退回营,汉军也死伤四五百人,于是韩信整顿兵马也返回大本营。当行至一山坡,忽有后军来报,说有楚军骑兵追来。只见远方尘土飞扬,杀声震天。汉军本来已十分疲惫,这时队伍大哗。韩信兵马到坡顶,见来敌不足五百骑,便急速点兵迎敌。他命令士兵3人一排,结果多出2名;接着命令士兵5人一排,结果多出3名;他又命令士兵7人一排,结果又多出2名。韩信马上向将士们宣布:我军有1073名勇士,敌人不足五百,我们居高临下,以众击寡,一定能打败敌人。汉军本来就信服自己的统帅,这一来更相信韩信是“神仙下凡”、“神机妙算”。于是士气大振。一时间旌旗摇动,鼓声喧天,汉军步步进逼,楚军乱作一团。交战不久,楚军大败而逃。在一千多年前的《孙子算经》中,有这样一道算术题: “今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”按照今天的话来说:一个数除以3余2,除以5余3,除以7余2,求这个数.这样的问题,也有人称为“韩信点兵”.它形成了一类问题,也就是初等数论中解同余式.这类问题的有解条件和解的方法被称为“中国剩余定理”,这是由中国人首先提出的.① 有一个数,除以3余2,除以4余1,问这个数除以12余几?解:除以3余2的数有: 2, 5, 8, 11,14, 17, 20, 23„. 它们除以12的余数是: 2,5,8,11,2,5,8,11,„. 除以4余1的数有: 1, 5, 9, 13, 17, 21, 25, 29,„. 它们除以12的余数是: 1, 5, 9, 1, 5, 9,„. 一个数除以12的余数是唯一的.上面两行余数中,只有5是共同的,因此这个数除以12的余数是5. 如果我们把①的问题改变一下,不求被12除的余数,而是求这个数.很明显,满足条件的数是很多的,它是 5+12×整数, 12 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 整数可以取0,1,2,„,无穷无尽.事实上,我们首先找出5后,注意到12是3与4的最小公倍数,再加上12的整数倍,就都是满足条件的数.这样就是把“除以3余2,除以4余1”两个条件合并成“除以12余5”一个条件.《孙子算经》提出的问题有三个条件,我们可以先把两个条件合并成一个.然后再与第三个条件合并,就可找到答案. ②一个数除以3余2,除以5余3,除以7余2,求符合条件的最小数. 解: 当某数被3除余1对,即写上70(因为70是5和7的倍数,是3的倍数多1),余2时即写70×2=140,这140仍是5和7的倍数,是3的倍数余2。某数被5除余1,即写上21(因为21是3和7的倍数、5的倍数余1),余2时,则写上21×2=42,余3时,则写上21×3=63。某数被7除余1时,即写上15(因为15是3和5的倍数,是7的倍数余1),余2时,则写上15×2=30。根据题意,把70×2+21×2+15×2计算出来结果。然后减去3、5、7的最小公倍数105,一直减到少于105为止,就得到了符合题目的数: 70×2+21×3+15×2-105×2=23 即此数是23。 那么韩信点的兵在1000-1500之间,应该是70×2+21×3+15×2+105×9=1073 满足除以3余2,除以5余3,除以7余2的,应该是等差数列23+210N,在1000-1500的有:1073,1283,1493。 中国剩余定理 - 相关条目 (1)有一个数,除以3余2,除以4余1,问这个数除以12余几? 解:2+3*m=1+4*n (1) 由 1+4*n<12得到 n<3 .(式中12是3、4的最小公倍数) 令n=0,1,2,3顺序带入验证,发现 n=1,m=1是式(1)的一个解。 当n=1时,1+4*n=5,所以 5+12*k就是这个数,它除以12余5. 也解有一个数,除以3余2,除以4余1,问这个数除以12余几? 除以4余1为等差数列1+4N,将该数列取3项:1,5,9,只有5满足除以3余2,因3*4=12,即满足除13 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 以3余2,除以4余1为等差数列5+12N。 依据本人在《等差数列》百度百科的留言“等差数列除以合数的余数”,2、当公差能被合数整时,该等差数列除以合数的余数,为等差数列的首项除以该合数的余数。因5+12N的公差12能被12整除,故5+12N数列除以12的余数为5/12,即余数为5。 (2)一个数除以3余2,除以5余3,除以7余2,求符合条件的最小数. 解:求解这个问题分两步,第一步求得一个数,使它除以3余2,除以5余3。 利用上面的方法,求得这个数为8+15*m,其中15为3、5的最小公倍数。 第二步,令 8+15*m=2+7*n (2) 由8+15*m<105得到 m<7.(式中105是15、7的最小公倍数) 令m=0,1,...,6,顺序代入验证,发现 m=1,n=3是式(2)的一个解。 当m=1时,8+15*m=23,所以要求的数为 23+105*k,最小的数为23, 韩信点兵的例子使1000<23+105*k<1500即可。 四川省三台县工商局王志成对中国剩余定理的理解: 从这里所列出的内容看,只能看出中国剩余定理的来源,看不出具体的定理。具体的定理应该是某数除以素因子的余数及计算方法。 其实,某数除以素因子的余数,应该包括能整除与不能整除;还应该包括除以素因子、除以合数的余数,这样才能形成一整套完整的余数问题,要解决这些问题,请借鉴等差数列的性质: 1、等差数列除以素因子的余数定理: (1)、当等差数列的公差能被素因子N整除时,该等差数列的每一个项,除以素因子N的余数都相同; (2)、当等差数列的公差不能被素因子N整除时,该等差数列的N个连续项,除以素因子N的余数分别为:0,1,2,3,4,„,N-1,具体余数排列顺序以公差和素因子有关,当公差与素因子相同时,余数循环排列顺序是相同的。 2、等差数列除以合数的余数定理: (1)、当合数为X时,合数X所包含的素因子与题中所提到的素因子无关。等差的公差又不能被合数X整除时,该等差数列的X个连续项,分别除以合数X的余数为:0,1,2,3,4,„,X-1,具体余数排列顺序以公差和合数有关;等差数列的公差能被合数整除时,该等差数列的每一项除以该合数的余数是相同的。 (2)、当合数为Y时,合数Y所包含的素因子与题中所提到的N个素因子相同时,等差数列的公差又不能被合数Y整除时,该等差数列除以合数Y的余数不得与这N个素因子的共同余数相矛盾,不同的余数个14 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 数为合数Y中除这N个素因子以外的其余素因子的乘积,或者合数Y除以这N个素因子的乘积;如果说,等差数列的公差能被合数Y整除(前提是:其余数不能与所包含的N个素因子的余数相矛盾)时,该等差数列的每一项除以该合数的余数是相同的。 例题一、某数除以3余1,除以5余3,除以7余5,除以11余7,问该数为多少? 满足条件1的为等差数列1+3N; 将1+3N取5项有:1,4,7,10,13,只有13满足条件1,2,即满足条件1,2的为等差数列13+15N, 将13+15N取7项有:13,28,43,58,73,88,103,只有103满足条件1,2,3,即满足条件1,2,3的为等差数列103+105N, 将103+105N取11项有:103,208,313,418,523,628,733,838,943,1048,1153,只有733同时满足条件1,2,3,4,即满足条件1,2,3,4的为等差数列733+1155N。 例题二、某数除以3余2,除以5余0,除以7余3,除以3003余1025,求该数为多少? 满足条件1为等差数列2+3N, 将2+3N取5项有:2,5,8,11,14,同时满足条件1,2的只有5,即满足条件1,2为等差数列5+15N; 将等差数列5+15N取7项有:5,20,35,50,65,80,95,同时满足条件1,2,3的只有80,即满足条件1,2,3为等差数列80+105N; 因为,等差数列80+105N的公差105不能被合数3003整除,而公差105=3*5*7,合数3003=3*7*11*13,有2个素因子3和7相同。而满足这两个有关的素因子的余数为等差数列17+21N,除以3003的余数为1025,在该等差数列之中即不相矛盾。不同的有素因子11和13,即从该等差数列取11*13=143个连续项,在这143个连续项中必然有一个项除以3003余1025,也只有一个项除以3003余1025。结果为第10项。1025+15015N等差数列的数满足所有条件。 计算技巧 任何东西,只要开动脑筋,就能熟练熟练巧。如例题二,我们把除以3003改为余59,59也属于等差数列17+21N中的数,该题不矛盾。我们是否非得将等差数列80+105N取143个项来寻找余59的数呢?在计算这类题的最好方法是:倒行逆施。 满足除以3003余59的数为等差数列59+3003N, 利用等差数列除以素因子的化简方法,将该等差数列的首项与公差同除以7的余数,得新的等差数列3+0N,取7项有:3,6,9,12,15,18,21,得第一项除以7余3,原等差数列的第一项为59,即59除以7余3,因3003能被7整除,仍然是等差数列59+3003N满足除以3003余59,除以7余3。同理,3003还能被素因子3整除,满足除以3余2的也是该等差数列,剩余的只须要计算满足除以5余0的数了。 将等差数列59+3003N的首项和公差同除以5的余数得新的等差数列:4+3N,取5项有:4,7,10,13,16,得第三项满足条件,代入原等差数列为,59+(3-1)*3003=6065满足所有条件,即6065+15015N等差数列的数,满足除以3余2,除以5余0,除以7余3,除以3003余59。 15 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 同余的新定理: 已知,37,37/3余1,37/5余2,37/7余2,37/11余4,37/13余11,问什么数除以这些素因子余数与37除以这些素因子的余数完全相同? 设该数为M,因为,M/3与37/3余数相同,所以,M-37必然被3整除。同理,M-37必然被5整除,M-37必然被7整除,M-37必然被11整除,M-37必然被13整除。 答:能被素因子3,5,7,11,13共同整除的数为3*5*7*11*13=15015,37+15015=15052,15052+15015N数列的数除以这些素因子的余数与37除以这些素因子的余数完全相同。 定理:任意数为P,不同的素因子为A,B,C,D,E,„,F时,有P/A余a,有P/B余b,有P/C余c,有P/D余d,有P/E余e,„,有P/F余f,只有当P+(A*B*C*D*E*„*F)N数列的数时,除以素因子A,B,C,D,E,„,F的余数,才与P除以素因子为A,B,C,D,E,„,F的余数完全相同。 第六章:抽屉原理 抽屉原理:桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。 抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素。” 抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是组合数学中一个重要的原理。 第一抽屉原理 原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。 16 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 抽屉原理 证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),故不可能。 原理2 :把多于mn+1(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。 证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。 原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。 原理1 、2 、3都是第一抽屉原理的表述。 第二抽屉原理 把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。 证明(反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。 编辑本段应用 基本介绍 应用抽屉原理解题 抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 例1:同年出生的400人中至少有2个人的生日相同。 解:将一年中的365天(或366天)视为365(366)个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有2人的生日相同. 400/365=1…35,1+1=2 又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同。 “从任意5双手套中任取6只,其中至少有2只恰为一双手套。” “从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。” 例2:幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都17 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 相同,试说明道理. 解 :从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同. 上面数例论证的似乎都是“存在”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要作用(.需要说明的是,运用抽屉原则只是肯定了“存在”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存在多少. 抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。下面我们来研究有关的一些问题。 制造抽屉是运用原则的一大关键 例1 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。 分析与解答 我们用题目中的15个偶数制造8个抽屉: 此抽屉特点:凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数可以在同一个抽屉中(符合上述特点).由制造的抽屉的特点,这两个数的和是34。 例2:从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。 分析与解答在这20个自然数中,差是12的有以下8对:{20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}。 另外还有4个不能配对的数{9},{10},{11},{12},共制成12个抽屉(每个括号看成一个抽屉).只要有两个数取自同一个抽屉,那么它们的差就等于12,根据抽屉原理至少任选13个数,即可办到(取12个数:从12个抽屉中各取一个数(例如取1,2,3,…,12),那么这12个数中任意两个数的差必不等于12)。 例3: 从1到20这20个数中,任取11个数,必有两个数,其中一个数是另一个数的倍数。 分析与解答 根据题目所要求证的问题,应考虑按照同一抽屉中,任意两数都具有倍数关系的原则制造抽屉.把这20个数按奇数及其倍数分成以下十组,看成10个抽屉(显然,它们具有上述性质): 18 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 {1,2,4,8,16},{3,6,12},{5,10,20},{7,14},{9,18},{11},{13},{15},{17},{19}。 从这10个数组的20个数中任取11个数,根据抽屉原理,至少有两个数取自同一个抽屉.由于凡在同一抽屉中的两个数都具有倍数关系,所以这两个数中,其中一个数一定是另一个数的倍数。 例4:某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么情况,在这n个校友中至少有两人握手的次数一样多。 分析与解答 共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n-1次,即这个人与每位到会校友都握了手.然而,如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n-2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0、1、2、…、n-2,还是后一种状态1、2、3、…、n-1,握手次数都只有n-1种情况.把这n-1种情况看成n-1个抽屉,到会的n个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。 在有些问题中,“抽屉”和“物体”不是很明显的,需要精心制造“抽屉”和“物体”.如何制造“抽屉”和“物体”可能是很困难的,一方面需要认真地分析题目中的条件和问题,另一方面需要多做一些题积累经验。 例5:15个网球分成数量不同的4堆,数量最多的一堆至少有多少个球?(注意,增加数量不同的条件) 分析与解答此题实际是求出15可分拆多少种4个互不相同的整数之和,而15=1+2+3+9=1+2+4+8=1+2+5+7=1+3+4+7=1+3+5+6=2+3+4+6,所以最多一堆的球数可能是9、8、7、6,其中至少有6个。 整除问题 把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用[0],[1],[2],…,[m-1]表示.每一个类含有无穷多个数,例如[1]中含有1,m+1,2m+1,3m+1,….在研究与整除有关的问题时,常用剩余类作为抽屉.根据抽屉原理,可以证明:任意n+1个自然数中,总有两个自然数的差是n的倍数。(证明:n+1个自然数被n整除余数至少有两个相等(抽屉原理),不妨记为m=a1*n+b n=a2*n+b,则m-n整除n)。 例1 证明:任取8个自然数,必有两个数的差是7的倍数。 分析与解答 在与整除有关的问题中有这样的性质,如果两个整数a、b,它们除19 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 以自然数m的余数相同,那么它们的差a-b是m的倍数.根据这个性质,本题只需证明这8个自然数中有2个自然数,它们除以7的余数相同.我们可以把所有自然数按被7除所得的7种不同的余数0、1、2、3、4、5、6分成七类.也就是7个抽屉.任取8个自然数,根据抽屉原理,必有两个数在同一个抽屉中,也就是它们除以7的余数相同,因此这两个数的差一定是7的倍数。 例2:对于任意的五个自然数,证明其中必有3个数的和能被3整除. 证明∵任何数除以3所得余数只能是0,1,2,不妨分别构造为3个抽屉: [0],[1],[2] ①若这五个自然数除以3后所得余数分别分布在这3个抽屉中(即抽屉中分别为含有余数为0,1,2的数),我们从这三个抽屉中各取1个(如1~5中取3,4,5),其和(3+4+5=12)必能被3整除. ②若这5个余数分布在其中的两个抽屉中,则其中必有一个抽屉至少包含有3个余数(抽屉原理),即一个抽屉包含1个余数,另一个包含4个,或者一个包含2个余数另一个抽屉包含3个。从余数多的那个抽屉里选出三个余数,其代数和或为0,或为3,或为6,均为3的倍数,故所对应的3个自然数之和是3的倍数. ③若这5个余数分布在其中的一个抽屉中,很显然,从此抽屉中任意取出三个余数,同情况②,余数之和可被3整除,故其对应的3个自然数之和能被3整除. 例2′:对于任意的11个整数,证明其中一定有6个数,它们的和能被6整除. 证明:设这11个整数为:a1,a2,a3……a11 又6=2×3 ①先考虑被3整除的情形 由例2知,在11个任意整数中,必存在: 3|a1+a2+a3,不妨设a1+a2+a3=b1; 同理,剩下的8个任意整数中,由例2,必存在:3 | a4+a5+a6.设a4+a5+a6=b2; 同理,其余的5个任意整数中,有:3|a7+a8+a9,设:a7+a8+a9=b3 ②再考虑b1、b2、b3被2整除. 依据抽屉原理,b1、b2、b3这三个整数中,至少有两个是同奇或同偶,这两个同奇(或同偶)的整数之和必为偶数.不妨设2|b1+b2 则:6|b1+b2,即:6|a1+a2+a3+a4+a5+a6 ∴任意11个整数,其中必有6个数的和是6的倍数. 20 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 例3: 任意给定7个不同的自然数,求证其中必有两个整数,其和或差是10的倍数. 分析:注意到这些数除以10的余数即个位数字,以0,1,…,9为标准制造10个抽屉,标以[0],[1],…,[9].若有两数落入同一抽屉,其差是10的倍数,只是仅有7个自然数,似不便运用抽屉原则,再作调整:[6],[7],[8],[9]四个抽屉分别与[4],[3],[2],[1]合并,则可保证至少有一个抽屉里有两个数,它们的和或差是10的倍数. 抽屉原理 - 表述 抽屉原理的一种更一般的表述为: “把多于kn+1个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。” 利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。 如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述: “把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。” 抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 面积问题 例:九条直线中的每一条直线都将正方形分成面积比为2:3的梯形,证明:这九条直线中至少有三条经过同一点. 证明:如图,设直线EF将正方形分成两个梯形,作中位线MN。由于这两个梯形的高相等, 故它们的面积之比等于中位线长的比,即|MH|:|NH| 。于是点H有确定的位置(它在正方形一对对边中点的连线上,且|MH|:|NH|=2:3). 由几何上的对称性,这种点共有四个(即图中的H、J、I、K).已知的九条适合条件的分割直线中的每一条必须经过H、J、I、K这四点中的一点.把H、J、I、K看成四个抽屉,九条直线当成9个物体,即可得出必定有3条分割线经过同一点 .应该是 [(物体数-1)÷抽屉数]+1 染色问题 例1正方体各面上涂上红色或蓝色的油漆(每面只涂一种色),证明正方体一定有三个面颜色相同. 21 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 证明:正方形有6个面 由最多[(m-1)÷n]+1 得出[(6-1)÷2]+1=[2.5]+1=3 例2 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。 分析与解答 首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.根据抽屉原理,至少有两个小朋友摸出的棋子的颜色在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。 例3:假设在一个平面上有任意六个点,无三点共线,每两点用红色或蓝色的线段连起来,都连好后,问你能不能找到一个由这些线构成的三角形,使三角形的三边同色? 解:首先可以从这六个点中任意选择一点,然后把这一点到其他五点间连五条线段,如图,在这五条线段中,至少有三条线段是同一种颜色,假定是红色,现在我们再单独来研究这三条红色的线。这三条线段的另一端或许是不同颜色,假设这三条线段(虚线)中其中一条是红色的,那么这条红色的线段和其他两条红色的线段便组成了我们所需要的同色三角形,如果这三条线段都是蓝色的,那么这三条线段也组成我们所需要的同色三角形。因而无论怎样着色,在这六点之间的所有线段中至少能找到一个同色三角形。 例3′(六人集会问题)证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。” 例3”:17个科学家中每个人与其余16个人通信,他们通信所讨论的仅有三个问题,而任两个科学家之间通信讨论的是同一个问题。证明:至少有三个科学家通信时讨论的是同一个问题。 解:不妨设A是某科学家,他与其余16位讨论仅三个问题,由鸽笼原理知,他至少与其中的6位讨论同一问题。设这6位科学家为B,C,D,E,F,G,讨论的是甲问题。 若这6位中有两位之间也讨论甲问题,则结论成立。否则他们6位只讨论乙、丙两问题。这样又由鸽笼原理知B至少与另三位讨论同一问题,不妨设这三位是C,D,E,且讨论的是乙问题。 若C,D,E中有两人也讨论乙问题,则结论也就成立了。否则,他们间只讨论丙问题,这样结论也成立。 编辑本段狄利克雷 22 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 含义 把八个苹果任意地放进七个抽屉里,不论怎样放,至少有一个抽屉放有两个或两个以上的苹果。抽屉原则有时也被称为鸽巢原理,它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原则。它是组合数学中一个重要的原理。 表现形式 把它推广到一般情形有以下几种表现形式。 形式一:设把n+1个元素划分至n个集合中(A1,A2,…,An),用a1,a2,…,an分别表示这n个集合对应包含的元素个数,则:至少存在某个集合Ai,其包含元素个数值ai大于或等于2。 证明:(反证法)假设结论不成立,即对每一个ai都有ai<2,则因为ai是整数,应有ai≤1,于是有: a1+a2+…+an≤1+1+…+1=n 所以,至少有一个ai≥2,即必有一个集合中含有两个或两个以上的元素。 形式二:设把nm+1个元素划分至n个集合中(A1,A2,…,An),用a1,a2,…,an表示这n个集合对应包含的元素个数,则:至少存在某个集合Ai,其包含元素个数值ai大于或等于m+1。 证明:(反证法)假设结论不成立,即对每一个ai都有ai a1+a2+…+an≤m+m+…+m=nm 所以,至少有存在一个ai≥m+1 知识扩展——高斯函数[x]定义:对任意的实数x,[x]表示“不大于x的最大整数”。例如:[3.5]=3,[2.9]=2,[-2.5]=-3,[7]=7,……一般地,我们有:[x]≤x<[x]+1 形式三:设把n个元素分为k个集合A1,A2,…,Ak,用a1,a2,…,ak表示这k个集合里相应的元素个数,需要证明至少存在某个ai大于或等于[n/k]。 证明:(用反证法)假设结论不成立,即对每一个ai都有ai<[n/k],于是有: a1+a2+…+ak<[n/k]+[n/k]+…+[n/k] =k?[n/k]≤k?(n/k)=n k个[n/k] ∴ a1+a2+…+ak 形式四:设把q1+q2+…+qn-n+1个元素分为n个集合A1,A2,…,An,用a1,a2,…,an表示这n个集合里相应的元素个数,需要证明至少存在某个i,使得ai大于或等于qi。 23 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 证明:(用反证法)假设结论不成立,即对每一个ai都有ai 于是有:a1+a2+…+an≤q1+q2+…+qn-n 所以,假设不成立,故必有一个i,在第i个集合中元素个数ai≥qi 形式五:证明:(用反证法)将无穷多个元素分为有限个集合,假设这有限个集合中的元素的个数都是有限个,则有限个有限数相加,所得的数必是有限数,这就与题设产生矛盾,所以,假设不成立,故必有一个集合含有无穷多个元素。 例证 例题1:400人中至少有两个人的生日相同.分析:生日从1月1日排到12月31日,共有366个不相同的生日,我们把366个不同的生日看作366个抽屉,400人视为400个苹果,由表现形式1可知,至少有两人在同一个抽屉里,所以这400人中有两人的生日相同. 解:将一年中的366天视为366个抽屉,400个人看作400个苹果,由抽屉原理的表现形式1可以得知:至少有两人的生日相同. 例题2:任取5个整数,必然能够从中选出三个,使它们的和能够被3整除. 证明:任意给一个整数,它被3除,余数可能为0,1,2,我们把被3除余数为0,1,2的整数各归入类r0,r1,r2.至少有一类包含所给5个数中的至少两个.因此可能出现两种情况:1°.某一类至少包含三个数;2°.某两类各含两个数,第三类包含一个数. 若是第一种情况,就在至少包含三个数的那一类中任取三数,其和一定能被3整除;若是第二种情况,在三类中各取一个数,其和也能被3整除..综上所述,原命题正确. 例题3:某校派出学生204人上山植树15301株,其中最少一人植树50株,最多一人植树100株,则至少有5人植树的株数相同. 抽屉原理 证明:按植树的多少,从50到100株可以构造51个抽屉,则个问题就转化为至少有5人植树的株数在同一个抽屉里。 24 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 (用反证法)假设无5人或5人以上植树的株数在同一个抽屉里,那只有5人以下植树的株数在同一个抽屉里,而参加植树的人数为204人,所以,每个抽屉最多有4人,故植树的总株数最多有: 4(50+51+…+100)=4× =15300<15301得出矛盾.因此,至少有5人植树的株数相同。 练习 1.边长为1的等边三角形内有5个点,那么这5个点中一定有距离小于0.5的两点; 2.边长为1的等边三角形内,若有n2+1个点,则至少存在2点距离小于0.5; 3.任意四个整数中,至少有两个整数的差能够被3整除; 4.某校高一某班有50名新生,试说明其中一定有二人的熟人一样多. 5.某个年级有202人参加考试,满分为100分,且得分都为整数,总得分为10101分,则至少有3人得分相同. 6.任意367个人中,必有生日相同的人; 7.从任意5双手套中任取6只,其中至少有2只恰为一双手套; 8.从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同; 9.一个木箱里装一样的红,黄,绿,白四种颜色的小球个10个,从箱里任意摸出小球,问至少要摸出10个小球才能保证一定有两种颜色的小球。 大家都会认为上面所述结论是正确的。这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理。它的内容可以用形象的语言表述为: “把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。” 编辑本段一般表述 在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入 366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。 抽屉原理的一种更一般的表述为: “把多于kn+1个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。” 25 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。 如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述: “把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。” 用高斯函数来叙述一般形式的抽屉原理的是:将m个元素放入n个抽屉,则在其中一个抽屉里至少会有 (m-1)÷n+1个元素。 抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 这个问题可以用如下方法简单明了地证出: 在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种。根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。如果BC,BD ,CD 3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD 3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。不论哪种情形发生,都符合问题的结论。 六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论。这些结论构成了组合数学中的重要内容-----拉姆塞理论。从六人集会问题的证明中,我们又一次看到了抽屉原理的应用。 编辑本段经典练习 系列之一 1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉,要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。 2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数? 26 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。 3.11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。试证明:必有两个学生所借的书的类型相同。 证明:若学生只借一本书,则不同的类型有A、B、C、D四种,若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种。共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”。如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同。 4.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同。 证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有0、1、2、3……48,只有49种可能,以这49种可能得分的情况为49个抽屉,现有50名运动员得分,则一定有两名运动员得分相同。 5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的? 解:根据规定,多有同学拿球的配组方式共有以下9种:﹛足﹜﹛排﹜﹛蓝﹜﹛足足﹜﹛排排﹜﹛蓝蓝﹜﹛足排﹜﹛足蓝﹜﹛排蓝﹜。以这9种配组方式制造9个抽屉,将这50个同学看作苹果50÷9 =5……5 由抽屉原理2:k=[m/n ]+1可得,至少有6人,他们所拿的球类是完全一致的。 6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人数为__________人。 解:因为任意分成四组,必有一组的女生多于2人,所以女生至少有4×2+1=9(人);因为任意10人中必有男生,所以女生人数至多有9人。所以女生有9人,男生有55-9=46(人) 系列之二 7、 证明:从1,3,5,……,99中任选26个数,其中必有两个数的和27 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 是100。 解析:将这50个奇数按照和为100,放进25个抽屉:(1,99),(3,97),(5,95),……,(49 ,51)。根据抽屉原理,从中选出26个数,则必定有两个数来自同一个抽屉,那么这两个数的和即为100。 8。 某旅游车上有47名乘客,每位乘客都只带有一种水果。如果乘客中有人带梨,并且其中任何两位乘客中至少有一个人带苹果,那么乘客中有______人带苹果。 解析:由题意,不带苹果的乘客不多于一名,但又确实有不带苹果的乘客,所以不带苹果的乘客恰有一名,所以带苹果的就有46人。 9。 一些苹果和梨混放在一个筐里,小明把这筐水果分成了若干堆,后来发现无论怎么分,总能从这若干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成了_______堆。 解析:要求把其中两堆合并在一起后,苹果和梨的个数一定是偶数,那么这两堆水果中,苹果和梨的奇偶性必须相同。对于每一堆苹果和梨,奇偶可能性有4种:(奇,奇),(奇,偶),(偶,奇),(偶,偶),所以根据抽屉原理可知最少分了4+1=5筐。 10。 有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出_____只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的。 解析:考虑最坏情况,假设拿了3只黑色、1只白色和1只蓝色,则只有一双同颜色的,但是再多拿一只,不论什么颜色,则一定会有两双同颜色的,所以至少要拿6只。 11。从前25个自然数中任意取出7个数,证明:取出的数中一定有两个数,这两个数中大数不超过小数的1.5倍。 证明:把前25个自然数分成下面6组: 1; ① 2,3; ② 4,5,6; ③ 7,8,9,10; ④ 11,12,13,14,15,16; ⑤ 17,18,19,20,21,22,23, ⑥ 因为从前25个自然数中任意取出7个数,所以至少有两个数取自上面第②组到第⑥组中的某同一组,这两个数中大数就不超过小数的1.5倍。 28 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 12.一副扑克牌有四种花色,每种花色各有13张,现在从中任意抽牌。问最少抽几张牌,才能保证有4张牌是同一种花色的? 解析:根据抽屉原理,当每次取出4张牌时,则至少可以保障每种花色一样一张,按此类推,当取出12张牌时,则至少可以保障每种花色一样三张,但还要加上大小怪,所以当抽取第15张牌时,无论是什么花色,都可以至少保障有4张牌是同一种花色。 13.从1、2、3、4……、12这12个自然数中,至少任选几个,就可以保证其中一定包括两个数,他们的差是7? 【解析】在这12个自然数中,差是7的自然树有以下5对:{12,5}{11,4}{10,3}{9,2}{8,1}。另外,还有2个在该范围取不到差值为7的配对的数是{6}、{7}。根据抽屉原理,共构造了7个抽屉。只要有两个数是取自同一个抽屉,那么它们的差就等于7。这7个抽屉可以表示为{12,5}{11,4}{10,3}{9,2}{8,1}{6}{7},显然从7个抽屉中取8个数,则一定可以使有两个数字来源于同一个抽屉,也即作差为7。 系列之三 1.某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具? 分析与解:将40名小朋友看成40个抽屉。今有玩具122件,122=3×40+2。应用抽屉原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具。也就是说,至少会有一个小朋友得到4件或4件以上的玩具。 2.一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块? 分析与解:将1,2,3,4四种号码看成4个抽屉。要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。所以一次至少要取出9块木块,才能保证其中有3块号码相同的木块。 3.六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种。问:至少有多少名学生订阅的杂志种类相同? 分析与解:首先应当弄清订阅杂志的种类共有多少种不同的情况。 订一种杂志有:订甲、订乙、订丙3种情况; 订二种杂志有:订甲乙、订乙丙、订丙甲3种情况; 订三种杂志有:订甲乙丙1种情况。 总共有3+3+1=7(种)订阅方法。我们将这7种订法看成是7个“抽屉”,把10029 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 名学生看作100件物品。因为100=14×7+2。根据抽屉原理2,至少有14+1=15(人)所订阅的报刊种类是相同的。 4.篮子里有苹果、梨、桃和桔子,现有81个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友拿的水果是相同的? 分析与解:首先应弄清不同的水果搭配有多少种。两个水果是相同的有4种,两个水果不同有6种:苹果和梨、苹果和桃、苹果和桔子、梨和桃、梨和桔子、桃和桔子。所以不同的水果搭配共有4+6=10(种)。将这10种搭配作为10个“抽屉”。 81÷10=8……1(个)。 根据抽屉原理2,至少有8+1=9(个)小朋友拿的水果相同。 5.学校开办了语文、数学、美术三个课外学习班,每个学生最多可以参加两个(可以不参加)。问:至少有多少名学生,才能保证有不少于5名同学参加学习班的情况完全相同? 分析与解:首先要弄清参加学习班有多少种不同情况。不参加学习班有1种情况,只参加一个学习班有3种情况,参加两个学习班有语文和数学、语文和美术、数学和美术3种情况。共有1+3+3=7(种)情况。将这7种情况作为7个“抽屉”,根据抽屉原理2,要保证不少于5名同学参加学习班的情况相同,要有学生 7×(5-1)+1=29(名)。 6. 在1,4,7,10,…,100中任选20个数,其中至少有不同的两对数,其和等于104。 分析:解这道题,可以考虑先将4与100,7与97,49与55……,这些和等于104的两个数组成一组,构成16个抽屉,剩下1和52再构成2个抽屉,这样,即使20个数中取到了1和52,剩下的18个数还必须至少有两个数取自前面16个抽屉中的两个抽屉,从而有不同的两组数,其和等于104;如果取不到1和52,或1和52不全取到,那么和等于104的数组将多于两组。 解:1,4,7,10,……,100中共有34个数,将其分成{4,100},{7,97},……,{49,55},{1},{52}共18个抽屉,从这18个抽屉中任取20个数,若取到1和52,则剩下的18个数取自前16个抽屉,至少有4个数取自某两个抽屉中,结论成立;若不全取1和52,则有多于18个数取自前16个抽屉,结论亦成立。 系列之四 1. 任意5个自然数中,必可找出3个数,使这三个数的和能被3整除。 分析:解这个问题,注意到一个数被3除的余数只有0,1,2三个,可以用余30 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 数来构造抽屉。 解:以一个数被3除的余数0、1、2构造抽屉,共有3个抽屉。任意五个数放入这三个抽屉中,若每个抽屉内均有数,则各抽屉取一个数,这三个数的和是3的倍数,结论成立;若至少有一个抽屉内没有数,那么5个数中必有三个数在同一抽屉内,这三个数的和是3的倍数,结论亦成立。 2. 在边长为1的正方形内,任意放入9个点,证明在以这些点为顶点的三角形中,必有一个三角形的面积不超过1/8. 解:分别连结正方形两组对边的中点,将正方形分为四个全等的小正方形,则各个小正方形的面积均为1/4 。把这四个小正方形看作4个抽屉,将9个点随意放入4个抽屉中,据抽屉原理,至少有一个小正方形中有3个点。显然,以这三个点为顶点的三角形的面积不超过1/8 。 反思:将边长为1的正方形分成4个面积均为1/4 的小正方形,从而构造出4个抽屉,是解决本题的关键。我们知道。将正方形分成面积均为1/4 的图形的方法不只一种,如可连结两条对角线将正方形分成4个全等的直角三角形,这4个图形的面积也都是1/4 ,但这样构造抽屉不能证到结论。可见,如何构造抽屉是利用抽屉原理解决问题的关键。 3. 班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。 解:把50名学生看作50个抽屉,把书看成苹果 ,根据原理1,书的数目要比学生的人数多,即书至少需要50+1=51本. 4. 在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米。 解:把这条小路分成每段1米长,共100段,每段看作是一个抽屉,共100个抽屉,把101棵树看作是101个苹果 ,于是101个苹果放入100个抽屉中,至少有一个抽屉中有两个苹果 ,即至少有一段有两棵或两棵以上的树 . 你也来试试? 1.饲养员给10只猴子分桃子,其中至少要有一只猴子得到7个桃子,饲养员至少要拿来多少个桃子? 2.从13个自然数中,一定可以找到两个数,它们的差是12的倍数。 3.一个班有40名同学,现在有课外书125本。把这些书分给同学,是否有人会得到4本或4本以上课外书? 4.42只鸽子飞进5个笼子里,可以保证在鸽子最多的笼子中至少有几只鸽子? 31 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 第七章:牛吃草问题概念及公式 牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。 解决牛吃草问题常用到四个基本公式,分别是︰ 1) 设定一头牛一天吃草量为“1” 1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数); 2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;` 3)吃的天数=原有草量÷(牛头数-草的生长速度); 4)牛头数=原有草量÷吃的天数+草的生长速度。 这四个公式是解决消长问题的基础。 由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。正是由于这个不变量,才能够导出上面的四个基本公式。 牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。 解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。 这类问题的基本数量关系是: 1.(牛的头数×吃草较多的天数-牛头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草的量。 2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草。 解多块草地的方法 多块草地的“牛吃草”问题,一般情况下找多块草地的最小公倍数,这样可以减少运算难度,但如果数据较大时,我们一般把面积统一为“1”相对简单些。 32 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 第八章:列组合 1、排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。 2、组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 3、定义及公式 A、排列的定义及其计算公式:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符A(n,m)表示。A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)! 此外规定0!=1 B、组合的定义及其计算公式:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。C(n,m)==A(n,m)/m!;C(n,m)=C(n,n-m)。(n>=m) C、其他排列与组合公式 从n个元素中取出m个元素的循环排列数=A(n,m)/m=n!/m(n-m)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!×n2!×...×nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,m)。 4、基本计数原理 ⑴加法原理和分类计数法 ⒈加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。 ⒉第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。 ⒊分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。 33 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 ⑵乘法原理和分步计数法 ⒈ 乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。 ⒉合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。 系数性质:⑴和首末两端等距离的系数相等; ⑵当末指数是奇数时,中间两项最大且相等; ⑶当末指数是偶数时,中间一项最大。 ⑷奇数项和偶数项总和相同,都是2^(n-1); ⑸所有系数总和是2^n 难点 ⑴从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; ⑵限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; ⑶计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; ⑷计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 1.明确任务的意义 例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有多少个? 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差,∴ 2b=a+c,可知b由a,c决定, 又∵ 2b是偶数,∴ a,c同奇或同偶,即:分别从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,A(10,2)*2=90*2,因而本题为180。 例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,若34 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法? 分析:对实际背景的分析可以逐层深入: (一)从M到N必须向上走三步,向右走五步,共走八步; (二)每一步是向上还是向右,决定了不同的走法; (三)事实上,当把向上的步骤决定后,剩下的步骤只能向右; 从而,任务可叙述为:从八个步骤中选出哪三步是向上走,就可以确定走法数。 ∴ 本题答案为:C(8,3)=56。 2.分析 分析是分类还是分步,是排列还是组合 注意加法原理与乘法原理的特点,分析是分类还是分步,是排列还是组合。 例3.在一块并排的10垄田地中,选择二垄分别种植A,B两种作物,每种种植一垄,为有利于作物生长,要求A,B两种作物的间隔不少于6垄,不同的选法共有多少种? 分析:条件中“要求A、B两种作物的间隔不少于6垄”这个条件不容易用一个包含排列数,组合数的式子表示,因而采取分类的方法。 第一类:A在第一垄,B有3种选择; 第二类:A在第二垄,B有2种选择; 第三类:A在第三垄,B有1种选择, 同理A、B位置互换 ,共12种。 例4.从6双不同颜色的手套中任取4只,其中恰好有一双同色的取法有多少种? (A)240 (B)180 (C)120 (D)60 分析:显然本题应分步解决。 (一)从6双中选出一双同色的手套,有6种方法; (二)从剩下的十只手套中任选一只,有10种方法。 (三)从除前所涉及的两双手套之外的八只手套中任选一只,有8种方法; (四)由于选取与顺序无关,因(二)(三)中的选法重复一次,因而共240种。 或分步 ⑴从6双中选出一双同色的手套,有C(6,1)=6种方法 ⑵从剩下的5双手套中任选两双,有C(5,2)=10种方法 35 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 ⑶从两双中手套中分别拿两只手套,有C(2,1)×C(2,1)=4种方法。 同样得出共⑴×⑵×⑶=240种。 例5.身高互不相同的6个人排成2横行3纵列,在第一行的每一个人都比他同列的身后的人个子矮,则所有不同的排法种数为_______。 分析:每一纵列中的两人只要选定,则他们只有一种站位方法,因而每一纵列的排队方法只与人的选法有关系,共有三纵列,从而有C(6,2)×C(4,2)×C(2,2)=90种。 例6.在11名工人中,有5人只能当钳工,4人只能当车工,另外2人能当钳工也能当车工。现从11人中选出4人当钳工,4人当车工,问共有多少种不同的选法? 分析:采用加法原理首先要做到分类不重不漏,如何做到这一点?分类的标准必须前后统一。 以两个全能的工人为分类的对象,考虑以他们当中有几个去当钳工为分类标准。 第一类:这两个人都去当钳工,C(2,2)×C(5,2)×C(4,4)=10种;第二类:这两个人都去当车工,C(5,4)×C(2,2)×C(4,2)=30种;第三类:这两人都不去当钳工,C(5,4)×C(4,4)=5种。 第四类:这两个人一个去当钳工、一个去当车工,C(2,1)×C(5,3)×C(4,3)=80种;第五类:这两个人一个去当钳工、另一个不去当车工,C(2,1)×C(5,3)×C(4,4)=20种;第六类:这两个人一个去当车工、另一个不去当钳工,C(5,4)×C(2,1)×C(4,3)=40种; 因而共有185种。 例7.现有印着0,1,3,5,7,9的六张卡片,如果允许9可以作6用,那么从中任意抽出三张可以组成多少个不同的三位数? 分析:有同学认为只要把0,1,3,5,7,9的排法数乘以2即为所求,但实际上抽出的三个数中有9的话才可能用6替换,因而必须分类。 抽出的三数含0,含9,有32种方法; 抽出的三数含0不含9,有24种方法; 抽出的三数含9不含0,有72种方法; 抽出的三数不含9也不含0,有24种方法。 因此共有32+24+72+24=152种方法。 例8.停车场划一排12个停车位置,今有8辆车需要停放,要求空车位连在一起,不同的停车方法有多少种? 36 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 分析:把空车位看成一个元素,和8辆车共九个元素排列,因而共有A(9,9)=362880种停车方法。 3.特殊优先 特殊元素,优先处理;特殊位置,优先考虑。 例9.六人站成一排,求 ⑴甲、乙既不在排头也不在排尾的排法数 ⑵甲不在排头,乙不在排尾,且甲乙不相邻的排法数 分析:⑴按照先排出首位和末尾再排中间四位分步计数 第一类:排出首位和末尾、因为甲乙不在首位和末尾,那么首位和末尾实在其它四位数选出两位进行排列、一共有A(4,2)=12种; 第二类:由于六个元素中已经有两位排在首位和末尾,因此中间四位是把剩下的四位元素进行顺序排列, 共A(4,4)=24种; 根据乘法原理得即不再排头也不在排尾数共12×24=288种。 ⑵第一类:甲在排尾,乙在排头,有A(4,4)种方法。 第二类:甲在排尾,乙不在排头,有3×A(4,4)种方法。 第三类:乙在排头,甲不在排尾,有3×A(4,4)种方法。 第四类:甲不在排尾也不再排头,乙不在排头也不再排尾,有6×A(4,4)种方法(排除相邻)。 共A(4,4)+3×A(4,4)+3×A(4,4)+6×A(4,4)=312种。 例10.对某件产品的6件不同正品和4件不同次品进行一一测试,至区分出所有次品为止。若所有次品恰好在第五次测试时被全部发现,则这样的测试方法有多少种可能? 分析:本题意指第五次测试的产品一定是次品,并且是最后一个次品,因而第五次测试应算是特殊位置了,分步完成。 第一步:第五次测试的有C(4,1)种可能; 第二步:前四次有一件正品有C(6,1)中可能。 第三步:前四次有A(4,4)种可能。 ∴ 共有576种可能。 4.捆绑与插空 例11. 8人排成一队 ⑴甲乙必须相邻 ;⑵甲乙不相邻 ;⑶甲乙必须相邻且与丙不相邻 37 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 ⑷甲乙必须相邻,丙丁必须相邻 ;⑸甲乙不相邻,丙丁不相邻 分析:⑴甲乙必须相邻,就是把甲乙 捆绑(甲乙可交换) 和7人排列A(6,6)×2 ⑵甲乙不相邻,A(8,8)-A(7,7)×2。 ⑶甲乙必须相邻且与丙不相邻,先求甲乙必须相邻且与丙相邻A(6,6)×2×2甲乙必须相邻且与丙不相邻A(7,7)×2-A(6,6)×2×2 ⑷甲乙必须相邻,丙丁必须相邻A(6,6)×2×2 ⑸甲乙不相邻,丙丁不相邻,A(8,8)-A(7,7)×2×2+A(6,6)×2×2 例12. 某人射击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况? 分析:∵ 连续命中的三枪与单独命中的一枪不能相邻,因而这是一个插空问题。另外没有命中的之间没有区别,不必计数。即在四发空枪之间形成的5个空中选出2个的排列,即A(5,2)。 例13. 马路上有编号为l,2,3,……,10 十个路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法共有多少种? 分析:即关掉的灯不能相邻,也不能在两端。又因为灯与灯之间没有区别,因而问题为在7盏亮着的灯形成的不包含两端的6个空中选出3个空放置熄灭的灯。 ∴ 共C(6,3)=20种方法。 5.间接计数法 ⑴排除法 例14. 三行三列共九个点,以这些点为顶点可组成多少个三角形? 分析:有些问题正面求解有一定困难,可以采用间接法。 所求问题的方法数=任意三个点的组合数-共线三点的方法数, ∴ 共76种。 15.正方体8个顶点中取出4个,可组成多少个四面体? 分析:所求问题的方法数=任意选四点的组合数-共面四点的方法数, ∴ 共C(8,4)-12=70-12=58个。 例16. 1,2,3,……,9中取出两个分别作为对数的底数和真数,可组成多少个不同数值的对数? 分析:由于底数不能为1。 38 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 ⑴当1选上时,1必为真数,∴ 有一种情况。 ⑵当不选1时,从2--9中任取两个分别作为底数,真数,共A(8,2)=56,其中log2为底4=log3为底9,log4为底2=log9为底3,log2为底3=log4为底9,log3为底2=log9为底4. 因而一共有56-4+1=53个。 例17. 六人排成一排,要求甲在乙的前面,(不一定相邻),共有多少种不同的方法? 如果要求甲乙丙按从左到右依次排列呢? 分析:(一)实际上,甲在乙的前面和甲在乙的后面两种情况对称,具有相同的排法数。因而有=360种。 (二)先考虑六人全排列;其次甲乙丙三人实际上只能按照一种顺序站位,因而前面的排法数重复了种, ∴ 共=120种。 例18.5男4女排成一排,要求男生必须按从高到矮的顺序,共有多少种不同的方法? 分析:首先不考虑男生的站位要求,共A(9,9)种;男生从左至右按从高到矮的顺序,只有一种站法,因而上述站法重复了次。因而有=9×8×7×6=3024种。 若男生从右至左按从高到矮的顺序,只有一种站法, 同理也有3024种,综上,有6048种。 例19. 三个相同的红球和两个不同的白球排成一行,共有多少种不同的方法? 分析:先认为三个红球互不相同,共A(5,5)=120种方法。 而由于三个红球所占位置相同的情况下,共A(3,3)=6变化,因而共A(5,5)/A(3,3)=20种。 公式P是指排列,从N个元素取R个进行排列(即排序)。公式C是指组合,从N个元素取R个,不进行排列(即不排序)。 6.挡板的使用 例20.10个名额分配到八个班,每班至少一个名额,问有多少种不同的分配方法? 分析:把10个名额看成十个元素,在这十个元素之间形成的九个空中,选出七个位置放置档板,则每一种放置方式就相当于一种分配方式。因而共36种。 7.区别与联系 所有的排列都可以看作是先取组合,再做全排列;同样,组合如补充一个阶段(排序)可转化为排列问题。 39 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 例21. 用数字0,1,2,3,4,5组成没有重复数字的四位数, ⑴可组成多少个不同的四位数? ⑵可组成多少个不同的四位偶数 ⑶可组成多少个能被3整除的四位数? 分析:⑴有A(6,4)-A(5,3)=300个。 ⑵分为两类:0在末位,则有A(5,3)=60种:0不在末位,则有C(2,1)×A(5,3)-C(2,1)×A(4,2)=96种。 ∴ 共60+96=156种。 ⑶先把四个相加能被3整除的四个数从小到大列举出来,即先选 0,1,2,3 0,1,3,5 0,2,3,4 0,3,4,5 1,2,4,5 它们排列出来的数一定可以被3整除,再排列,有:4×[A(4,4)-A(3,3)]+A(4,4)=96种。 8.分组问题 例22. 5名学生分配到4个不同的科技小组参加活动,每个科技小组至少有一名学生参加,则分配方法共有多少种? 分析:(一)先把5个学生分成二人,一人,一人,一人各一组。 其中涉及到平均分成四组,有C(5,3)=10种分组方法。可以看成4个板三个板不空的隔板法。 (二)再考虑分配到四个不同的科技小组,有A(4,4)=24种, 由(一)(二)可知,共10×24=240种。 9.几何问题 例23.某区有7条南北向街道,5条东西向街道(如右图) ⑴图中共有多少个矩形? ⑵从A点到B点最近的走法有多少种? 分析:⑴在7条竖线中任选2条,5条横线中任选2条,这样4条线 可组成1个矩形,故可组成矩形C(7,2)·C(5,2)=210个 ⑵每条东西向的街道被分成4段,每条南北向的街道被分成6段, A到B最短的走法,无论怎样走,一定包括10段,其中6段方向相同,40 小学数学原理、定律 平原乡完小:向学辉 2013年6月年30日 另外4段方向相同,每种走法,即是从10段中选出6段,这6段是走东西方向的,共有C(10,6)=C(10,4)=210种走法(同样可以从10段中选出4段走南北方向,每一种选法即是1种走法)。所以共有210种走法。 第九章等比数列 一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。 注:q=1时,an为常数列(n为下标)。 (1)等比数列的通项公式是:an=a1×q^(n-1)【(a1≠0,q≠0)。】(1、n均为下标)。 (2)求和公式:Sn=na1(q=1) Sn=a1(1-q^n)/(1-q) =(a1-a1q^n)/(1-q) =(a1-an*q)/(1-q) =a1/(1-q)-a1/(1-q)*q^n( 即a-aq^n) 等比数列求和公式 (前提:q≠ 1) 任意两项am,an的关系为an=am·q^(n-m);在运用等比数列的前n项和时,一定要注意讨论公比q是否为1. 【注】:数列既不是等差数列,也不是等比数列,而是由两个项数相等的等差数列:1,1,…,1和等比数列:8,-24,72,-216,… 的对应项的和构成的数列,故其前n项和Sn可转化为相应的两个已知数列的和,这里,观察通项结构,利用化归思想把未知转化为已知。 例8 设数列的前n项和Sn=2an-1(n=1,2,…),数列满足b1=3,b(k+1)=ak+bk(k=1,2,…),求数列{bn}的前n项和。
更多推荐
抽屉,问题,原理,元素,个数,情况,方法
发布评论