2024年3月4日发(作者:宁德2020年数学试卷)
2022~2023学年度秦淮区钟英3月第一次月考八年级数学有一项是符合题目要求的,请将正确选项的序号填(涂)在答卷纸上.)...1.下列图案中,既是中心对称图形又是轴对称图形的是2023.3.21一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰.B.C.D.2.某市有47857名初中毕业生参加升学考试,为了了解这47857名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是A.47857名考生的数学成绩B.2000C.抽取的2000名考生D.抽取的2000名考生的数学成绩3.下列说法正确的是A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线相等的四边形是矩形C.每一条对角线都平分一组对角的四边形是菱形D.对角线互相垂直且相等的四边形是正方形4.如图,在□ABCD中,AC、BD交于点O,∠BAO=90°,BD=10cm,AC=6cm,则AB的长为:A.4cmB.5cmC.6cmD.8cm5.下列调查中,更适宜普查的是A.某本书的印刷错误C.某条河中鱼的种类B.某产品的使用寿命D.大众对某电视节目的喜好程度A.6.如图①,四边形ABCD中,若AB=AD,CB=CD,四边形ABCD称为筝形.根据我们已经知道四边形、平行四边形、矩形、菱形、正方形的关系如图②所示,则在图②中用圆形阴影画出筝形的大致区域正确的是:A四边形AOB(第4题)CDBD平行四边形正矩形方菱形形C图①(第6题)图②1
四边形平行四边形正矩形方菱形形四边形平行四边形正矩形方菱形形四边形平行四边形正矩形方菱形形四边形平行四边形正矩形方菱形形A.B.C.D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答卷纸相应位置上.).......7.若式子x-1在实数范围内有意义,则x的取值范围是________▲.8.在空气的成分中,氮气约占78%,氧气约占21%,其他微量气体约占1%.若要表示以上信息,最合适的统计图是9.计算:(4)2=▲▲.▲.;(-3)2=10.某班在大课间活动中抽查了20名学生每分钟跳绳次数,得到如下数据(单位:次):65,74,83,87,88,89,9l,93,100,102,108,11l,117,121,130,133,146,158,177,188.则跳绳次数在90~110这一组的频率是▲.11.如图,在菱形ABCD中,点A在x轴上,点B的坐标为(12,3),点D的坐标为(0,3),则点C的坐标为▲.yCDBABDC(第12题)Al1l2l3l4Ox(第11题)12.如图,同一平面内的四条平行直线l1、l2、l3、l4分别过正方形ABCD的四个顶点A、B、C、D,且每相邻的两条平行直线间的距离都为1,则该正方形的面积是▲.13.如图,在□ABCD中,∠D=100°,AE平分∠DAB交DC于点E,则∠AEC=▲°.14.如图,矩形OBCD的顶点C的坐标为(1,3),则BD=▲.DECDy3CA(第13题)BOx1(第14题)B15.如图,将边长都为2cm的正方形按如图所示的方法摆放,点A1,A2,…,An分别是正方形的对称中心,则2017个这样的正方形重叠部分的面积和为▲cm2.2
16.如图,在△ABC中,∠BAC=90°,AB=AC,P是△ABC内一点.若PA=1,PC=2,∠APC=135°,则PB的长为▲.AA1A2A3A4BPC(第16题)(第15题)三、解答题(本大题共9小题,共68分.请在答卷纸指定区域内作答,解答时应根据需要,........写出文字说明、证明过程或演算步骤.)5+201117.(6分)计算:(1)+312-48;(2)-×12.33518.(8分)某校对学校社团活动开展的满意度进行调查,其满意度分为非常满意、满意、一般、不满意四个等级.调查组从八年级480名学生中随机抽查了若干名学生进行调查,并将反馈情况绘制成如下统计表:满意度非常满意满意一般不满意合计频数a362424c百分比30%b20%20%100%(1)a=▲,b=▲,c=▲(2)根据表中数据,绘制扇形统计图;;(3)估计该校八年级学生“满意”的约有多少人?19.(6分)如图,在平行四边形ABCD中,点E、F分别为AB、CD中点.G、H分别在边DA、BC上,且AG=CH.(1)求证:四边形EHFG是平行四边形;(2)若GH=AD,求证:四边形EHFG是矩形.BEFAGDH(第19题)C3
20.(8分)知识回顾我们在学习《二次根式》这一章时,对二次根式有意义的条件和性质进行了探索,得到了如下结论:Ⅰ.二次根式a在实数范围内有意义的条件是a≥0.Ⅱ.二次根式的性质:①(a)2=a(a≥0);②a2=│a│.类比推广根据探索二次根式相关知识过程中获得的经验,解决下面的问题.(1)根式根式2014a在实数范围内有意义的条件是a在实数范围内有意义的条件是n▲▲,;2015(2)写出n次根式a(n≥3,n是整数)在实数范围内有意义的条件和性质.21.(8分)已知:如图,□ABCD中,对角线AC,BD相交于点O,延长BC至E,使CE=BC,连接AE交CD于点F.(1)求证:CF=FD;(2)若AD=DC=6,求:∠BDE的度数和OF的长.FEDCOAB(第21题)22.(8分)某校体育老师为了研究八年级学生400m赛跑后心率的分布情况,随机抽取了该年级45名学生,测量了他们赛跑后1min的脉搏次数,结果如下:3354161162▲144156162;6349466(1)该调查中的个体是脉搏次数x(次/分)132≤x<137137≤x<频数/学生人数(2)该老师将上述数据分组后,列出了右边的频数分布表,请将频数分布表补充完整;(3)根据频数分布表画出频数分布直方图.▲▲▲681210▲≤x<147147≤x<152152≤x<157157≤x<162162≤x<1674
23.(6分)已知∠MAN,按要求完成下列尺规作图(不写作法,保留作图痕迹):(1)如图①,B、C分别在射线AM、AN上,求作□ABDC;(2)如图②,点O是∠MAN内一点,求作线段PQ,使P、Q分别在射线AM、AN上,且点O是PQ的中点.MMBOAC(第23题图①)NA(第23题图②)N24.(8分)我们知道,平行四边形的对边平行且相等.利用这一性质,可以为证明线段之间的位置关系和数量关系提供帮助.重温定理,识别图形(1)如图①,我们在探究三角形中位线DE和第三边BC的关系时,所作的辅助线为“延长DE到点F,使EF=DE,连接CF”,此时DE与DF在同一直线上且1DE=DF,又可证图中的四边形2▲▲为平行四边形,可得BC与DF的关系是GD1,于是推导出了“DE∥BC,DE=BC”.2AAEFEDFBCH②BC①寻找图形,完成证明(2)如图②,四边形ABCD和四边形AEFG都是正方形,△BEH是等腰直角三角形,∠EBH=90°,连接CF、CH.求证CF=2BE.构造图形,解决问题(3)如图③,四边形ABCD和四边形AEFG都是菱形,∠ABC=∠AEF=120°,连接BE、CF.求出..CF与BE的数量关系.EAGFDB③C5
25.(10分)实践操作在矩形ABCD中,AB=8,AD=6,现将纸片折叠,点D的对应点记为点P,折痕为EF(点E、F是折痕与矩形的边的交点),再将纸片还原.D初步思考(1)若点P落在矩形ABCD的边AB上(如图①).ECFAPB(第25题①)①当点P与点A重合时,∠DEF=▲°;当点E与点A重合时,∠DEF=▲°;②当点E在AB上,点F在DC上时(如图②),求证:四边形DEPF为菱形,并直接写...出当AP=7时的菱形EPFD的边长..DFCAEP(第25题②)B深入探究(2)若点P落在矩形ABCD的内部(如图③),且点E、F分别在AD、DC边上,请直接F写出AP的最小值.CDEP(第25题③)AB拓展延伸(3)若点F与点C重合,点E在AD上,射线BA与射线FP交于点M(如图④).在各种不同的折叠位置中,是否存在某一情况,使得线段AM与线段DE的长度相等?若存在,请直接写出线段AE的长度;若不存在,请说明理由.DC(F)EAPB6(第25题④)M
数学参考答案及评分标准说明:本评分标准每题给出了一种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分.)题号答案7.x≥11A2D3C110.44A5A6D二、填空题(本大题共10小题,每小题2分,共20分.)8.扇形统计图9.4,313.140°14.10(或0.25,25%等)16.611.(6,6)12.515.2016三、解答题(本大题共10小题,共68分)(本题8分)17.3(1)解:原式=+63―43................................................................................................2分373=.................................................................................................................................3分35201(2)解:原式=+×12......................................................................................4分―355=1+4―4=1........................................................................................................................................6分18.解:(1)36;30%;120.········································································3分八年级部分学生满意度分布扇形统计图(2)不满意20%一般20%满意30%非常满意30%·········································································································6分(3)480×30%=144答:该校八年级学生“满意”的约有144人·····················································8分19.(6分)证明:(1)∵∴∵∴∴∵∴四边形ABCD是平行四边形,AB=CD,∠A=∠C.点E、F分别为AB、CD中点,11AE=AB,CF=CD.22AE=CF.AG=CH,△AEG≌△CFH.···································································2分1
∴∴∵∴∵∴∴∵∴∴∵∴同理EG=FH.EH=GF.····················································3分四边形EHFG是平行四边形.四边形ABCD是平行四边形,AB=CD,AB∥CD.点E、F分别为AB、CD中点,11AE=AB,DF=CD.22AE=DF.AB∥CD,EF=AD.GH=AD,EF=GH.四边形EHFG是平行四边形,四边形EHFG是矩形.四边形AEFD是平行四边形.(2)连接EF.AGDEFBH(第19题)C·····················································5分又∵∴20.(8分)·····························································6分解:(1)a≥0;a为任意实数……………………………(2)n2分a(n≥3,n是整数)有意义的条件:a(n≥3,n是整数)的性质:nnn当n为偶数时,a≥0;当n为奇数时,a为任意实数..................4分n当n为偶数时,①(a)n=a(a≥0),②an=│a│;..................................6分当n为奇数时,①(a)n=a,②an=a.......................................................8分21.(8分)(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.········································································1分∵BC=CE,∴AD∥CE,AD=CE.∴四边形ACED是平行四边形,····································································2分∴CF=FD.·······························································································3分(2)①∵四边形ABCD是平行四边形,且AD=DC,∴四边形ABCD是菱形∴AC⊥BD.∴∠COB=90°.··························································································4分∵四边形ACED是平行四边形,2n
∴AC∥ED.∴∠BDE=∠COB=90°.···············································································6分②(方法一)∵AC⊥BD.∴∠COD=90°.∵CF=FD,CD=61∴OF=CD=3···········································································8分2或(方法二)∵四边形ABCD是平行四边形∴OA=OC.又∵CF=DF,CD=6.1∴OF=AD=3·········································································8分222.(8分)解:(1)每一名学生400m赛跑后1min的脉搏次数.2分(2)142,142,·····················································································································3分2,5.··················································································································5分(3)如图所示.八年级学生赛跑后1min的脉搏次数的频数分布直方图频数210············································································································································8分77脉搏次数(次/分)23.(6分)解:(1)如图1,四边形ABDC即为所求;……………………………………………2分(2)如图2,线段PQ即为所求.………………………………………………………6分MMBDPOAC(第23题图①)NAQ(第23题图②)N3
24.(8分)解:(1)DBCF;BC∥DF,BC=DF.································································2分(2)在正方形ABCD和等腰直角三角形BEH中,∠ABC=∠EBH=90°,BA=BC,BE=BH.∴∠ABE=∠CBH.∴△ABE≌△CBH.∴AE=CH,∠AEB=∠CHB.·····························3分在正方形AEFG中,AE=EF,∠AEF=90°.∴EF=CH.在等腰直角三角形BEH中,∠BEH=∠BHE=45°.∴∠AEB+∠FEH=360°-∠BEH-∠AEF=225°.∴∠CHB+∠FEH=225°.∵∠BHE=45°,∴∠CHE+∠FEH=225°-45°=180°.∴EF∥CH.·····················································4分∴四边形EHCF是平行四边形.∴CF=EH.∵EH=BE2+BH2=BE2+BE2=2BE,∴CF=2BE.····················5分(3)CF=3BE.(方法如下:作等腰△BEH,使BH=BE,∠EBH=120°,连接CH.在菱形ABCD和等腰三角形BEH中,∵∠ABC=∠EBH=120°,∴∠ABE=∠CBH.∵BA=BC,BE=BH,∴△ABE≌△CBH.∴AE=CH,∠AEB=∠CHB.在菱形AEFG中,∵AE=EF,∴EF=CH.∵∠BEH=(180°-∠EBH)÷2=30°,∠AEF=120°,∴∠AEB+∠FEH=360°-∠BEH-∠AEF=210°.∴∠CHB+∠FEH=210°.∵∠BHE=(180°-∠EBH)÷2=30°,∴∠CHE+∠FEH=210°-30°=180°.∴EF∥CH.∴四边形EHCF是平行四边形.∴CF=EH.在△BEH中,易证EH=3BE.∴CF=3BE.)······················································8分BH③(第24题)CAEGFDBH②CEAGDF4
25.(本题10分)(1)①90°,45°…………………………………………………………………………2分②设DP交EF于点O,∵四边形ABCD是矩形,∴DF∥AB,∴∠ODF=∠OPE,∠OFD=∠OEP,∵点D沿EF折叠后对应点为P,∴EF⊥DP,DO=PO,在△DOF和△EOP中∠ODF=∠OPE,∠OFD=∠OEP,DO=PO.DFCOAEP(第25题①)B∴△DOF≌△POE(AAS)∴DF=PE∵DF∥AB∴四边形DEFP是平行四边形∵EF⊥DP∴□DEFP是菱形.…………………………………………………………………4分边长为85.………………………………………………………………………………5分14………………………………………………………………………………10分(2)AP的最小值为2.……………………………………………………………………8分642(3)或511注:第(3)小题有一个正确答案给2分,有两个正确答它给3分.5
更多推荐
四边形,平行四边形,矩形
发布评论