2024年3月13日发(作者:数学试卷的行距)

高一数学网课

教学目标

1、通过对幂函数概念的学习以及对幂函数图像和性质的归纳与概括,让学生体验数

学概念的形成过程,培养学生的抽象概括能力。

2、并使学生认知并掌控幂函数的图像与性质,并能够初步运用所学科学知识化解有

关问题,培育学生的有效率思维能力。

教学难点

幂函数图像和性质的辨认出过程

教学重点

幂函数的性质及运用

教学过程

一、 教学引入

数学和日常生活是密不可分的,观察下列问题中的函数个有什么共同特征?

(1)如果李斯在超市买了每支1元的水笔n(支),那么他应当缴付p=n元。这里p就是

n的函数。

(2)如果正方形的边长a,那么正方形的面积为s=a2 ,这里s是a的函数。

(3)如果立方体的`边长a,那么立方体的体积为v=a3 ,这里v就是a的函数。

(4)如果正方形的面积为s,那么这个正方形的边长为a=s ,这里a是s的函数。

(5)如果小俊t(s)内骑车前进了1(km),那么他骑车的平均速度为v=t-1 ( ),这里

v就是t的函数。

由学生讨论,总结,即可得出:p=n,s=a2 ,v=a3 ,a=s ,v=t-1 都是自变量的

若干次幂的形式。

这文言,我们将来共同自学另一种函数--幂函数(老师板书课题)

二、 讲授新课

1、定义:通常地,函数y=xa 叫作幂函数,其中x就是自变量,a就是虚常数。

判断一个函数是否是幂函数?注意:①是否为幂的形式;②自变量是幂的底数,指数可

以是任意实数。

基准1、(1)y=xa 与y=ax 一样吗?

(2)在函数y=x+2,y=1,y=x2+x,y=2x2+3,y= 中,哪几个函数是幂函数?

(3)未知幂函数y=f(x)的图像过点(2, ),试求出来这个函数的解析式。

2、对于幂函数y=xa ,讨论当a=1,2,3, ,-1时的函数性质

表格如下:

y=x y=x2 y=x3 y=x y=x-1

定义域

值 域

奇偶性

单调性

的定 点

下面先请五位同学分别在黑板上画出每个函数的图像,其他同学可以在同一坐标系内

作五个幂函数的图像。(要给学生留出充分时间去研究函数性质)

通过观察图像与表格

(1)函数y=x,y=x2 ,y=x3 ,y=x 和y=x-1 的图像都通过(1,1) ;

(2)函数y=x ,y=x3 ,y=x-1 就是奇函数,函数y=x2 就是偶函数;

(3)在第一象限内,函数y=x,y=x2 ,y=x3 和y=x 是增函数,函数y=x-1 是减函

数;

(4)在第一象限内,函数y=x-1 的图像向上与y轴无穷吻合,向右与x轴无穷吻合。

例2、求下列函数的定义域,并判断函数的奇偶性

(1)f(x)=-2x5 (2)g(x)=x4+2

(3)f(x)=-x+ x (4)g(x)=5x+ x

3、开拓题

证明幂函数f(x)= x3在r上是增函数

三、 课外作业

p49 习题2-5 a组 1、2

教学后记

本节课主要从五个具体幂函数中认识幂函数的一些性质,画五个幂函数的图像并由图

像概括其性质是教学中可能遇到的困难,所以要注意引导学生亲自动手画图像、分组讨论

等形式,让学生自己去探究,把主动权交给学生。


更多推荐

幂函数,函数,学生,性质,图像,教学