2024年4月14日发(作者:包头联考高一数学试卷)
高中数学等差数列教案3篇
教案是教师为顺利而有效地开展教学活动,根据课程标准,
教学大纲和教科书要求及学生的实际情况,以课时或课题为单
位,对教学内容、教学步骤、教学方法等进行的具体设计和安排
的一种实用性教学文书。下面是为大家收集等差数列教案,希望
你们能喜欢。
等差数列教案一
【教学目标】
1. 知识与技能
(1)理解等差数列的定义,会应用定义判断一个数列是否是
等差数列:
(2)账务等差数列的通项公式及其推导过程:
(3)会应用等差数列通项公式解决简单问题。
2.过程与方法
在定义的理解和通项公式的推导、应用过程中,培养学生
的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊
到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,
渗透函数与方程的思想。
3.情感、态度与价值观
通过教师指导下学生的自主学习、相互交流和探索活动,
培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,
让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细
心观察、认真分析、善于总结的良好习惯。
【教学重点】
①等差数列的概念;②等差数列的通项公式
【教学难点】
①理解等差数列“等差”的特点及通项公式的含义;②等差
数列的通项公式的推导过程.
【学情分析】
我所教学的学生是我校高一(7)班的学生(平行班学生),经
过一年的高中数学学习,大部分学生知识经验已较为丰富,他们
的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和
演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣
还不是很浓,所以我在授课时注重从具体的生活实例出发,注重
引导、启发、研究和探讨以符合这类学生的心理发展特点,从而
促进思维能力的进一步发展.
【设计思路】
1.教法
①启发引导法:这种方法有利于学生对知识进行主动建构;
有利于突出重点,突破难点;有利于调动学生的主动性和积极性,
发挥其创造性.
②分组讨论法:有利于学生进行交流,及时发现问题,解
决问题,调动学生的积极性.
③讲练结合法:可以及时巩固所学内容,抓住重点,突破
难点.
2.学法
引导学生首先从三个现实问题(数数问题、水库水位问题、
储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差
数列概念的特点,推导出等差数列的通项公式;可以对各种能力
的同学引导认识多元的推导思维方法.
【教学过程】
一:创设情境,引入新课
1.从0开始,将5的倍数按从小到大的顺序排列,得到的
数列是什么?
2.水库管理人员为了保证优质鱼类有良好的生活环境,用
定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为
18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放
水算起,到可以进行清理工作的那天,水库每天的水位(单位:
m)组成一个什么数列?
3.我国现行储蓄制度规定银行支付存款利息的方式为单
利,即不把利息加入本息计算下一期的利息.按照单利计算本利
和的公式是:本利和=本金(1+利率存期).按活期存入10 000元钱,
年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:
元)组成一个什么数列?
教师:以上三个问题中的数蕴涵着三列数.
学生:
1:0,5,10,15,20,25,….
2:18,15.5,13,10.5,8,5.5.
3:10072,10144,10216,10288,10360.
(设置意图:从实例引入,实质是给出了等差数列的现实背景,
目的是让学生感受到等差数列是现实生活中大量存在的数学模
型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,
培养学生的归纳能力.
二:观察归纳,形成定义
①0,5,10,15,20,25,….
②18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
思考1上述数列有什么共同特点?
思考2根据上数列的共同特点,你能给出等差数列的一般
定义吗?
思考3你能将上述的文字语言转换成数学符号语言吗?
教师:引导学生思考这三列数具有的共同特征,然后让学
生抓住数列的特征,归纳得出等差数列概念.
学生:分组讨论,可能会有不同的答案:前数和后数的差
符合一定规律;这些数都是按照一定顺序排列的…只要合理教师
就要给予肯定.
教师引导归纳出:等差数列的定义;另外,教师引导学生从
数学符号角度理解等差数列的定义.
(设计意图:通过对一定数量感性材料的观察、分析,提炼
出感性材料的本质属性;使学生体会到等差数列的规律和共同特
点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一
常数”,落实对等差数列概念的准确表达.)
三:举一反三,巩固定义
1.判定下列数列是否为等差数列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教师出示题目,学生思考回答.教师订正并强调求公差应注
意的问题.
注意:公差d是每一项(第2项起)与它的前一项的差,防止
把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为
0 .
(设计意图:强化学生对等差数列“等差”特征的理解和应
用).
2思考4:设数列{an}的通项公式为an=3n+1,该数列是等差
数列吗?为什么?
(设计意图:强化等差数列的证明定义法)
四:利用定义,导出通项
1.已知等差数列:8,5,2,…,求第200项?
2.已知一个等差数列{an}的首项是a1,公差是d,如何求
出它的任意项an呢?
教师出示问题,放手让学生探究,然后选择列式具有代表
性的上去板演或投影展示.根据学生在课堂上的具体情况进行具
体评价、引导,总结推导方法,体会归纳思想以及累加求通项的
方法;让学生初步尝试处理数列问题的常用方法.
(设计意图:引导学生观察、归纳、猜想,培养学生合理的
推理能力.学生在分组合作探究过程中,可能会找到多种不同的
解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、
勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培
养学生运算能力)
五:应用通项,解决问题
1判断100是不是等差数列2, 9,16,…的项?如果是,
是第几项?
2在等差数列{an}中,已知a5=10,a12=31,求a1,d和an.
3求等差数列 3,7,11,…的第4项和第10项
教师:给出问题,让学生自己操练,教师巡视学生答题情
况.
学生:教师叫学生代表总结此类题型的解题思路,教师补
充:已知等差数列的首项和公差就可以求出其通项公式
(设计意图:主要是熟悉公式,使学生从中体会公式与方程之
间的联系.初步认识“基本量法”求解等差数列问题.)
六:反馈练习:教材13页练习1
七:归纳总结:
1.一个定义:
等差数列的定义及定义表达式
2.一个公式:
等差数列的通项公式
3.二个应用:
定义和通项公式的应用
教师:让学生思考整理,找几个代表发言,最后教师给出
补充
(设计意图:引导学生去联想本节课所涉及到的各个方面,
沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握
基本概念,并灵活运用基本概念.)
【设计反思】
本设计从生活中的数列模型导入,有助于发挥学生学习的
主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过
分析、观察,归纳出等差数列定义,然后由定义导出通项公式,
强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学
生分析问题和解决问题的能力.本节课教学采用启发方法,以教
师提出问题、学生探讨解决问题为途径,以相互补充展开教学,
总结科学合理的知识体系,形成师生之间的良性互动,提高课堂
教学效率.
等差数列教案二
教学准备
教学目标
掌握等差数列与等比数列的概念,通项公式与前n项和公
式,等差中项与等比中项的概念,并能运用这些知识解决一些基
本问题.
教学重难点
掌握等差数列与等比数列的概念,通项公式与前n项和公
式,等差中项与等比中项的概念,并能运用这些知识解决一些基
本问题.
教学过程
等比数列性质请同学们类比得出.
【方法规律】
1、通项公式与前n项和公式联系着五个基本量,“知三求
二”是一类最基本的运算题.方程观点是解决这类问题的基本数学
思想和方法.
2、判断一个数列是等差数列或等比数列,常用的方法使用
定义.特别地,在判断三个实数
a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c
均不为0)
3、在求等差数列前n项和的(小)值时,常用函数的思想和
方法加以解决.
等差数列教案三
【示范举例】
例1:(1)设等差数列的前n项和为30,前2n项和为100,
则前3n项和为.
(2)一个等比数列的前三项之和为26,前六项之和为728,
则a1=,q=.
例2:四数中前三个数成等比数列,后三个数成等差数列,
首末两项之和为21,中间两项之和为18,求此四个数.
例3:项数为奇数的等差数列,奇数项之和为44,偶数项
之和为33,求该数列的中间项.
【篇二】
教学准备
教学目标
知识目标等差数列定义等差数列通项公式
能力目标掌握等差数列定义等差数列通项公式
情感目标培养学生的观察、推理、归纳能力
教学重难点
教学重点等差数列的概念的理解与掌握
等差数列通项公式推导及应用教学难点等差数列“等差”的
理解、把握和应用
教学过程
由_《红高粱》主题曲“酒神曲”引入等差数列定义
问题:多媒体演示,观察----发现?
一、等差数列定义:
一般地,如果一个数列从第2项起,每一项与它的前一项
的差等于同一个常数,那么这个数列就叫做等差数列。这个常数
叫做等差数列的公差,通常用字母d表示。
例1:观察下面数列是否是等差数列:….
二、等差数列通项公式:
已知等差数列{an}的首项是a1,公差是d。
则由定义可得:
a2-a1=d
a3-a2=d
a4-a3=d
……
an-an-1=d
即可得:
an=a1+(n-1)d
例2已知等差数列的首项a1是3,公差d是2,求它的通
项公式。
分析:知道a1,d,求an。代入通项公式
解:∵a1=3,d=2
an=a1+(n-1)d
=3+(n-1)2
=2n+1
例3求等差数列10,8,6,4…的第20项。
分析:根据a1=10,d=-2,先求出通项公式an,再求出a20
解:∵a1=10,d=8-10=-2,n=20
由an=a1+(n-1)d得
a20=a1+(n-1)d
=10+(20-1)(-2)
=-28
例4:在等差数列{an}中,已知a6=12,a18=36,求通项an。
分析:此题已知a6=12,n=6;a18=36,n=18分别代入通项公
式an=a1+(n-1)d中,可得两个方程,都含a1与d两个未知数组
成方程组,可解出a1与d。
解:由题意可得
a1+5d=12
a1+17d=36
d=2a1=2
an=2+(n-1)2=2n
练习
1.判断下列数列是否为等差数列:
①23,25,26,27,28,29,30;
②0,0,0,0,0,0,…
③52,50,48,46,44,42,40,35;
④-1,-8,-15,-22,-29;
答案:①不是②是①不是②是
等差数列{an}的前三项依次为a-6,-3a-5,
于()
-10a-1,则a等
A.1B.-1C.-1/3D.5/11
提示:(-3a-5)-(a-6)=(-10a-1)-(-3a-5)
3.在数列{an}中a1=1,an=an+1+4,则a10=.
提示:d=an+1-an=-4
教师继续提出问题
已知数列{an}前n项和为……
等差数列教案三
整体设计
教学分析
本节课将探究一类特殊的数列——等差数列.本节课安排2
课时,第1课时是在生活中具体例子的基础上引出等差数列的概
念,接着用不完全归纳法归纳出等差数列的通项公式,最后根据
这个公式去进行有关计算.第2课时主要是让学生明确等差中项
的概念,进一步熟练掌握等差数列的通项公式及其推导的公式,
并能通过通项公式与图象认识等差数列的性质.让学生明白一个
数列的通项公式是关于正整数n的一次型函数,使学生学会用图
象与通项公式的关系解决某些问题.在学法上,引导学生去联想、
探索,同时鼓励学生大胆质疑,学会探究.在问题探索过程中,
先从观察入手,发现问题的特点,形成解决问题的初步思路,然
后用归纳方法进行试探,提出猜想,最后采用证明方法(或举反
例)来检验所提出的猜想.其中例1是巩固定义,例2到例5是等
差数列通项公式的灵活运用.
在教学过程中,应遵循学生的认知规律,充分调动学生的
积极性,尽可能让学生经历知识的形成和发展过程,激发他们的
学习兴趣,发挥他们的主观能动性及其在教学过程中的主体地位.
使学生认识到生活离不开数学,同样数学也是离不开生活的.学
会在生活中挖掘数学问题,解决数学问题,使数学生活化,生活
数学化.
数列在整个中学数学内容中处于一个知识汇合点的地位,
很多知识都与数列有着密切联系,过去学过的数、式、方程、函
数、简易逻辑等知识在这一章均得到了较为充分的应用,而学习
数列又为后面学习数列与函数的极限等内容作了铺垫.教材采取
将代数、几何打通的混编体系的主要目的是强化数学知识的内在
联系,而数列正是在将各知识沟通方面发挥了重要作用.因此本
节内容是培养学生观察问题、启发学生思考问题的好素材.
三维目标
1.通过实例理解等差数列的概念,通过生活中的实例抽象
出等差数列模型,让学生认识到这一类数列是现实世界中大量存
在的数列模型.同时经历由发现几个具体数列的等差关系,归纳
出等差数列的定义的过程.
2.探索并掌握等差数列的通项公式,由等差数列的概念,
通过归纳或迭加或迭代的方式探索等差数列的通项公式.通过与
一次函数的图象类比,探索等差数列的通项公式的图象特征与一
次函数之间的联系.
3.通过对等差数列的研究,使学生明确等 差数列与一般数
列的内在联系,渗透特殊与一般的辩证唯物主义观点,加强理论
联系实际,激发学生的学习兴趣.
重点难点
教学重点:等差数列的概念,等差数列的通项公式,等差
中项及性质,会用公式解决一些简单的问题.
教学难点:概括通项公式推导过程中体现的数学思想方法,
以及从函数、方程的观点看通项公式,并会解决一些相关的问题.
课时安排
2课时
教学过程
第1课时
导入新课
思路1.(直接导入)教师引导学生先复习上节课学过的数列
的概念以及通项公式,可有意识地在黑板上(或课件中)出示几个
数列,如:数列1,2,3,…,数列0,0,0,…,数列0,2,4,6,…等,
然后直接引导学生阅读教材中的实例,不知不觉中就已经进入了
新课.
思路2.(类比导入)教师首先引导学生复习上节课所学的数
列的概念及通项公式,使学生明了我们现在要研究的就是一列数.
由此我们联想:在初中我们学习了实数,研究了它的一些运算与
性质,那么我们能不能也像研究实数一样,来研究它的项与项之
间的关系、运算和性质呢?由此导入新课.
推进新课
新知探究
提出问题
1回忆数列的概念,数列都有哪几种表示方法?
2阅读教科书本节内容中的①②③3个背景实例,熟悉生
活中常见现象,写出由3个实例所得到的数列.
3观察数列①②③,它们有什么共同特点?
4根据数列①②③的特征,每人能再举出2个与其特征
相同的数列吗?
5什么是等差数列?怎样理解等差数列?其中的关键字词是
什么?
6数列①②③存在通项公式吗?如果存在,分别是什么?
7等差数列的通项公式是什么?怎样推导?
活动:教师引导学生回忆上节课所学的数列及其简单表示
法——列表法、通项公式、递推公式、图象法,这些方法从不同
角度反映了数列的特点.然后引导学生阅读教材中的实例模型,
指导学生写出这3个模型的数列:
①22,22.5,23,23.5,24,24.5,…;
②2,9,16,23,30;
③89,83,77,71,65,59,53,47.
这是由日常生活中经常遇到的实际问题中得到的数列.观
察这3个数列发现,每个数列中相邻的后项减前项都等于同一个
常数.当然这里我们是拿后项减前项,其实前项减后项也是一个
常数,为了后面内容的学习方便,这个 顺序不能颠倒.
至此学生会认识到,具备这个特征的数列模型在生活中有
很多,如上节提到的堆放钢管的数列为100,99,98,97,…,某体
育场一角的看台的座位排列:第一排15个座位,向后依次为
17,19,21,23,…,等等.
以上这些数列的共同特征是:从第2项起,每一项与它前
面一项的差等于同一个常数(即等差).这就是我们这节课要研究
的主要内容.教师先让学生试着用自己的语言描述其特征,然后
给出等差数列的定义.
等差数列的定义:一般地,如果一个数列从第2项起,每
一项与它前一项的差等于同一个常数,这个数列就叫做等差数
列,这个常数叫做等差数列的公差,公差通常用字母d表示.
教师引导学生理解这个定义:这里公差d一定是由后项减
前项所得,若前项减后项则为-d,这就是为什么前面3个模型的
分析中总是说后项减前项而不说前项减后项的原因.显然3个模
型数列都是等差数列,公差依次为0.5,7,-6.
教师进一步引导学生分析等差数列定义中的关键字是什
么?(学生在学习中经常遇到一些概念,能否抓住定义中的关键
字,是能否正确、深入地理解和掌握概念的重要条件,这是学好
数学及其他学科的重要一环.因此教师应该教会学生如何深入理
解一个概念,以培养学生分析问题、认识问题的能力)
这里“从第二项起”和“同一个常数”是等差数列定义中的核
心部分.用递推公式可以这样描述等差数列的定义:对于数列
{an},若an-an-1=d(d是与n无关的常数或字母),n2,nN_,则此
数列是等差数列.这是证明一个数列是等差数列的常用方法.点拨
学生注意这里的“n2”,若n包括1,则数列是从第1项向前减,
显然无从减起.若n从3开始,则会漏掉a2-a1的差,这也不符合
定义,如数列1,3 ,4,5,6,显然不是等差数列,因此要从意义上深
刻理解等差数列的定义.
教师进一步引导学生探究数列①②③的通项公式,学生
根据已经学过的数列通项公式的定义,观察每一数列的项与序号
之间的关系会很快写出:①an=21.5+0.5n,②an=7n-5,
③an=-6n+95.
以上这几个通项公式有共同的特点,无论是在求解方法上,
还是在所求的结果方面都存在许多共性.教师点拨学生探求,对
任意等差数列a1,a2,a3,…,an,…,根据等差数列的定义都
有:
a2-a1=d,
a3-a2=d,
a4-a3=d,
……
所以a2=a1+d,
a3=a2+d=(a1+d)+d=a1+2d,
a4=a3+d=(a1+2d)+d=a1+3d.
学生很容易猜想出等差数列的通项公式an= a1+(n-1)d后,
教师适时点明:我们归纳出的公式只是一个猜想,严格的证明需
要用到后面的其他知识.
教师可就此进一步点拨学生:数学猜想在数学领域中是很
重要的思考方法,后面还要专门探究它.数学中有很多著名的猜
想,如哥德巴赫猜想常被称为数学皇冠上的明珠,对于它的证明
中国已处于世界领先地位.很多著名的数学结论都是从猜想开始
的.但要注意,数学猜想仅是一种数学想象,在未得到严格的证
明前不能当作正确的结论来用.这里我们归纳猜想的等差数列的
通项公式an=a1+(n-1)d是经过严格证明了的,只是现在我们知识
受限,无法证明,所以说我们先承认它.鼓励学生只要创新探究,
独立思考,也会有自己的新奇发现.
教师根据教学实际情况,也可引导学生得出等差数列通项
公式的其他推导方法.例如:
方法一(叠加法):∵{an}是等差数列,
an-an-1=d,
an-1-an-2=d,
an-2-an-3=d,
……
a2-a1=d.
两边分别相加得an-a1=(n-1)d,
所以an=a1+(n-1)d,
方法二(迭代法):{an}是等差数列,则有
an=an-1+d,
=an-2+d+d
=an-2+2d
=an-3+d+2d
=an-3+3d
……
=a1+(n-1)d.
所以an=a1+(n-1)d.
讨论结果:
(1)~(4)略.
(5)如果一个数列从第2 项起,每一项与它的前一项的差都
等于同一个常数,那么这个数列就叫做等差数列.其中关键词为
“从第2项起”、“等于同一个常数”.
(6)三个数列都有通项公式,它们分别是:an=21.5+0.5n,
an=7n-5,an=-6n+95.
(7)可用叠加法和迭代法推导等差数列的通项公式:
an=a1+(n-1)d.
应用示例
例1(教材本节例2)
活动:本例的目的是让学生熟悉公式,使学生从中体会公
式与方程之间的联系.教学时要使学生认识到等差数列的通项公
式其实就是一个关于an、a1、d、n(独立的量有3个)的方程,以
便于学生能把方程思想和通项公式相结合,解决等差数列问题.
本例中的(2)是判断一个数是否是某等差数列的项.这个问题可以
看作(1)的逆问题.需要向学生说明的是,求出的项数为正整数,
所给数就是已知数列中的项,否则,就不是已知数列中的项.本
例可由学生自己独立解决,也可做板演之用,教师只是对有困难
的学生给予恰当点拨.
点评:在数列中,要让学生明确解方程的思路.
变式训练
(1)100是不是等差数列2,9,16,…的项,如果是,是第几项?
如果不是,请说明理由;
更多推荐
学生,公式,问题,通项,教师
发布评论