下面小编为大家整理了高二数学题练习精选,本文共9篇,欢迎阅读与借鉴!

篇1:高二数学题练习精选

求以双曲线x平方/9-y平方/16=1的右焦点为圆心,与其渐进线相切的圆的方程

解答2113:

双曲线x平方/9-y平方/16=1

∴5261 a?=9,b?=16

∴ c?=a?+b?=25

∴ 右焦点F(5,0)

渐近线是4102y=±(4/3)x

即4x±3y=0

∴ F到渐近线的距离d=|4_5|/√(4?+3?)=4

即 圆的半径1653为4

∴ 圆的方程是(x-5)?+y?=16

篇2:高二数学题练习精选

答案

一、选择题:DDDCB DADBC AA

二、填空题: 13.-4 14. 4x-3y-16=0或4x-3y+24=0 15.(4) 16. (-∞,-3)

三、解答题:

17.解:以直线AB为x轴,线段AB的中点为原点建立直角坐标系,则B(-3,0),A(3,0)

设点C的坐标为(x,y) .............................................2分

当角B≠900时:KBC=,KAC=

因为∠B=2∠A所以有tanB=,而当点C在x上方时:

tanB=KBC,tanA= -KAC, 当点C在x下方时: tanB=-KBC,tanA=KAC.............5分

所以

∵y≠0,∴整理得:

3x2-6x-y2-9=0...........................................................................8分

当角B=900时:∠A=450,点C的坐标为(-3,6)满足方程3x2-6x-y2-9=0

由题意可知C点必在y轴的左侧,所以所求方程为:

3x2-6x-y2-9=0(x<0且y≠0)............................................................10分

18.解:(1)∵KAB=5,KAC=

∴tanA==,∠A=arctan.............................................3分

(2)由角平分线AD上任意一点到AC、AB的距离相等得:

,化简得:x+y-6=0或y=x由画图可知结果应为:

y = x .......................................................................................7分

(3)(过程略)BC边上的高AH所在的直线方程是:3x-y-6=0..................11分

19.解:设x1≤1,x2≤1,.........................................................2分

g(x1)-g(x2)=(x12-x22)+2(x1-x2)

=x1-x2?x1+x2+2..............................6分

≤x1-x2?(x1+x2+2)≤4x1-x2

所以g(x)∈S...........................................................................11分

20.解:设使用x年的年平均费用为y万元.

由已知得:y= ................................................5分

即y=1+(x∈N+).....................................................................7分

由均值不等式知:y≥1+2=3......................................................10分

当且仅当=即x=10时取等号

因此使用报废最合算,年平均费用为3万元.......................................12分

21.解:(1)由题意可知:L1到Ln的距离为:=2+3+4+......n,

∵>∴=..................................................................4分

(2)设直线Ln:x-y+cn=0交x轴于M点,交y轴于N点,则△OMN的面积为:

S△OMN=│OM││ON│==....................................8分

(3)围成的图形是等腰梯形,由(2)知Sn=.则有

Sn-1=

Sn-Sn-1=-=n3

所以所求面积为n3...........................................................................12分

篇3:高二数学题练习精选

例1.下列图形中具有相关关系的两个变量是( )

【答案】 C

【解析】A、B中显然任给一个x都有唯一确定的y值和它对应,是函数关系;C中从散点图可看出所有点看上去都在某条直线附近波动,具有相关关系,因此变量间是不相关的。

举一反三:

【变式1】下列两变量中具有相关关系的是( )

(A)正方体的体积与边长;(B)匀速行驶的车辆的行驶距离与时间;

(C)人的身高与体重; (D)人的身高与视力

【答案】

选(C).

篇4:高二数学题练习精选

一、选择题(每题有四个选项,只有一个是正确的,请把答案涂在答题卡上,共12个小题,

每小题4分)

1.若a、b为实数,则ab(a-b)>0成立的一个充要条件是 ( )

A.a < 0 < b B.b < a < 0 C.a >b >0 D. <

2.下列各式中最小值是2的是 ( )

A.+ B. C.tanx+cotx D.

3.若|a-c|< b ,则下列不等式不成立的是 ( )

A.|a|<|b|+|c| B.|c|<|a|+|b| c.b=“”>||c|-|a|| D.b<||a|-|c||

4.直线L1:2x+(m+1)y+4=0与直线L2:mx+3y-2=0平行,则m的值为( )

A.2 B.-3 C.2或-3 D.-2或-3

5.直线2x-y-4=0绕它与x轴的交点逆时针旋转后,所得的直线方程为 ( )

A.x-3y-2=0 B.3x+y-6=0 C. 3x-y+6=0 D.x+y-2=0

6.直线x+y-1=0到直线xsinα+ycosα-1=0 (<α< )的角是 ( )

A.α- B.-α C.α- D.-α

7.已知直线L1:2x-y+3=0和直线L2:x-y+2=0,若L2上任意一点到L1的距离与它到L

的距离相等,则直线L的方程是 ( )

A.x-2y+3=0 B.x-2y-3=0 C.x+2y-1=0 D.y-1=(x+1)

8.不等式< x+1的解集是 ( )

A.{x|x >-3} B.{x|< x < }

C.{x|x < 1} D.{x|x >或-

9.不等式|x-1|+|x+2|≤a的解集非空,则实数a的取值范围是 ( )

A.a>3 B.a≥3 C.a≤4 D. a≥4

10.已知直线y=x+b与曲线xy=相交于A、B两点,若AB=5,则实数b的值为( )A.± B. C. ± D.±

11.已知正数x,y满足x+2y =1,则+的最小值为 ( )

A.3+2 B.4+ C.4 D.2+3

12.△ABC中,a、b、c是内角A、B、C的对边,且lgsinA、lgsinB、lgsinC成等差数列,

则下列两条直线L1:(sin2A)x+(sinA)y-a=0,L2:(sin2B)x+(sinC)y-c =0的

位置关系是

A.重合 B.相交 C.垂直 D.平行

第Ⅱ卷(非选择题,共72分)

二、填空题(本大题共4个小题,每小题4分,满分16分)

13.若0≤x≤1,-1≤y≤2,则z=x+4y的最小值为__________________.

14.已知A(-1,0),B(2,4), △ABC的面积为10,则动点C的轨迹方程是________________.

15.给出下列命题:

(1)线性规划中最优解指的是使目标函数取得最大值或最小值的变量x或y的值.

(2)线性规划中最优解指的是目标函数的最大值或最小值.

(3)线性规划中最优解指的是目标函数取得最大值或最小值的可行域.

(4)线性规划中最优解指的是使目标函数取得最大值或最小值的可行解.

其中正确的命题的题号是__________________.

16.已知关于x的不等式(a+b)x+(2a-3b)< 0的解集是(-∞,) , 则关于x的不等式

(a-3b)x+(b-2a)>0的解集是_________________.

三、解答题(本大题共5个小题,满分56分,解答题应写出文字说明,证明过程或演算步骤)

17.(本小题满分10分) C

如图已知△ABC的底边AB长是6,并且∠B=2∠A,求顶点C的

轨迹方程.B A18.(本小题满分11分)

已知ΔABC的三边方程是AB:5x-y-12=0,BC:x+3y+4=0,CA:x-5y+12=0,

求:

(1)∠A的大小。

(2)∠A的平分线所在的直线方程。

(3)BC边上的高所在的直线的方程。

19.(本小题满分11分)

设函数的集合S={f(x)},其中每个函数f(x)满足条件:当|x1|≤1、|x2|≤1时,|f(x1)-f(x2)|

≤4|x1-x2|,试判断g(x)=x2+2x+3是否属于S.

20.(本小题满分12分)

某种设备购买时费用为10万元,每年的设备管理费共计9千元,这种生产设备的维修费各年为:第一年2千元, 第二年4千元, 第三年6千元,而且以后以每年2千元的增量逐年递增.问这种生产设备最多使用多少年报废最合算(即使用多少年的年平均费用最少)?

21.(本小题满分12分)

已知n条直线:L1:x-y+C1=0、C1 =, L2:x-y+C2=0,L3:x-y+C3=0,

......Ln:x-y+Cn=0 .(其中C1< C2

距离顺次为2,3,4,......,n.

(1)求Cn 。

(2)求x-y+Cn=0与x轴、y轴围成的图形的面积。

(3)求x-y+Cn-1=0与x-y+Cn=0及x轴、y轴围成的图形的面积。

篇5:高二数学题(人教版)

一、选择题(共12小题,每小题5分,共60分)

1、下列结论正确的是

①函数关系是一种确定性关系;②相关关系是一种非确定性关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法;④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.

A.①②B.①②③C.①②④D.①②③④

2、以下结论不正确的是()

A.根据2×2列联表中的数据计算得出K2≥6.635,而P(K2≥6.635)≈0.01,则有99%的把握认为两个分类变量有关系

B.在线性回归分析中,相关系数为r,|r|越接近于1,相关程度越大;|r|越小,相关程度越小

C.在回归分析中,相关指数R2越大,说明残差平方和越小,回归效果越好

D.在回归直线中,变量x=200时,变量y的值一定是15

3、已知的取值如下表所示,若与线性相关,且,则()

A.B.C.D.

4、某饮料店的日销售收入(单位:百元)与当天平均气温(单位:)之间有下列数据:

-2-1012

54221

甲、乙、丙三位同学对上述数据进行研究,分别得到了与之间的四个线性回归方程,其中正确的是()

A.B.C.D.

5、设随机事件A、B的对立事件为、,且,则下列说法错误的是()

A.若A和B独立,则和也一定独立

B.若,则

C.若A和B互斥,则必有

D.若A和B独立,则必有

6、已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ

A.0.1359B.0.1358C.0.2718D.0.2716

7、随机变量ξ~B(100,0.3),则D(2ξ-5)等于()

A.120B.84C.79D.42

8、小王通过英语听力测试的概率是,他连续测试3次,那么其中恰有1次获得通过的概率是()

A.B.C.D.

9、从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,则对立的两个事件是()

A.至少有1个白球,都是白球B.至少有1个白球,至少有1个红球

C.恰有1个白球,恰有2个白球D.至少有1个白球,都是红球

10、空间直角坐标系中的点(,1)关于z轴对称的点的柱坐标为()

A.B.C.D.

11、在极坐标系中,点到圆的圆心的距离为()

A.2B.C.D.

12、直角坐标方程y2-3x2-4x-1=0等价的极坐标方程是()

A.ρ=1+ρcosθB.ρ=1+cosθC.ρ=1+2ρcosθD.ρ=1+2cosθ

二、填空题(共4小题,每小题5分,共20分)

13、某班有名同学,一次数学考试的成绩服从正态分布,已知,估计该班学生数学成绩在分以上的有

人;

14、某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温.

气温(℃)141286

用电量(度)22263438

由表中数据得回归方程中,据此预测当气温为5℃时,用电量的度数约为.

15、在极坐标系中,圆ρ=2上的点到直线ρ(cosθ+sinθ)=6的距离的最小值是.

16、曲线极坐标方程ρ=2cos2θ,该曲线与坐标轴的交点个数是个。

三、解答题(共6小题,共70分)

17、(10分)已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为参数).

(1)求直线l和圆C的普通方程;

(2)若直线l与圆C有公共点,求实数a的取值范围.

18、(12分)在直角坐标系中,曲线的参数方程为.若以该直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:(其中为常数)

(1)若曲线与曲线只有一个公共点,求的取值范围;

(2)当时,求曲线上的点与曲线上点的最小距离

19、(12分)在一次购物抽奖活动中,假设某10张券中有一等奖1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有将;某顾客从此10张券中任取2张,求:

(1)该顾客中奖的概率;

(2)该顾客获得的奖品总价值(元)的概率分布列.

20、(12分)某人居住在城镇的A处,准备开车到单位B处上班,若该地各路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图例如A→C→D算两个路段:设路段AC发生堵车事件的概率为,路段CD发生堵车事件的概率为.

(1)请你为其选择一条由A到B的路线,使得途中发生堵车事件的概率最小;

(2)若记路线A→C→F→B中遇到堵车的次数为随机变量ξ,求ξ的数学期望E(ξ).

21、(12分)学习雷锋精神前半年内某单位餐厅的固定餐椅经常有损坏,学习雷锋精神时全修好;单位对学习雷锋精神前后各半年内餐椅的损坏情况作了一个大致统计,具体数据如下:

损坏餐椅数未损坏餐椅数总计

学习雷锋精神前50150200

学习雷锋精神后30170200

总计80320400

(1)求:学习雷锋精神前后餐椅损坏的百分比分别是多少?并初步判断损毁餐椅数量与学习雷锋精神是否有关?

(2)请说明是否有97.5%以上的把握认为损毁餐椅数量与学习雷锋精神有关?

参考公式:,

22、(12分)测得某地10对父子的身高(单位:英寸)如下:

父亲身高x60626465666768707274

儿子身高y63.665.26665.566.967.167.468.370.170

(1)如果y与x之间具有线性相关关系,求线性回归方程;

(2)如果父亲的身高为73英寸,估计儿子的身高为多少.

篇6:高二数学题(人教版)

一、选择题(每小题5分,共20个小题,本题满分60分)

1、复数在复平面内对应的点位于()

A.第一象限B.第二象限C.第三象限D.第四象限

2.命题“,”的否定是()

A.,B.,

C.,D.,

3.设,则“”是“直线与直线平行”

的()

A.充分不必要条件B.必要不充分条件

C.充分必要条件D.既不充分也不必要条件

4.函数f(x)=的图像在点(0,f(0))处的切线的倾斜角为()

A.0B.π4C.1D.π2

5.以抛物线的焦点为圆心,且过坐标原点的圆的方程为()

A.B.

C.D.

6.已知双曲线的左右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线方程为()

A.B.C.D.

7.已知圆的方程为,过点的直线被圆所截,则截得的最短弦的长度为()

A.B.C.D.

8.已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是()

A.(-1,2)B.(-∞,-3)∪(6,+∞)

C.(-3,6)D.(-∞,-1)∪(2,+∞)

9.若方程在上只有一个解,则实数的取值范围是

A.B.

C.D.

10.我们把由半椭圆合成的曲线称作“果圆”(其中)。如图,设点是相应椭圆的焦点,A1、A2和B1、B2是“果圆”与x,y轴的交点,若△F0F1F2是腰长为1的等腰直角三角形,则a,b的值分别为()

A.5,4B.C.D.

11.函数的定义域为R,,对任意,函数导数,则的解集为()

A.B.C.D.

12.已知圆,定点,,()

A.B.C.D.

第Ⅱ卷(非选择题共90分)

二、填空题(每小题5分,共4小题,满分20分)

13.=.

14.设满足约束条件:;则的取值范围为.

15.已知分别为椭圆的左、右焦点,若存在过的圆与直线相切,则椭圆离心率的值为.

16.设函数f(x)=kx3-3x+1(x∈R),若对于任意x∈[-1,1],都有f(x)≥0成立,则实数k的值为________.

三、解答题(本大题共6小题,17题10分,18—22题均为12分,共计70分,解答时应写出解答过程或证明步骤)

17.已知命题:方程表示焦点在轴上的椭圆,命题:关于X的方程无实根,

(1)若命题为真命题,求实数的取值范围;

(2)若“”为假命题,“”为真命题,求实数的取值范围.

18.已知圆C:,直线过点

(1)若直线与圆C相切,求直线的方程;

(2)

19.已知抛物线C:上的一点到焦点的距离等于5.

(1)求抛物线C的方程;

(2)若过点的直线与抛物线C相交于A,B两点,为坐标原点,求面积最小值.

20.已知函数f(x)=ex-ax-1.

(1)若,求f(x)的单调增区间;

(2)是否存在a,使f(x)在(-2,3)上为减函数,若存在,求出a的取值范围,若不存在,请说明理由.

21.已知椭圆:的离心率为,左焦点为,过点且斜率为的直线交椭圆于两点.

(1)求椭圆的标准方程;

(2)求的取值范围;

(3)在轴上,是否存在定点,使恒为定值?若存在,求出点的坐标和这个定值;若不存在,说明理由.

22.已知函数.

(Ⅰ)若为函数的极值点,求的值;

(Ⅱ)讨论在定义域上的单调性;

(Ⅲ)证明:对任意正整数,.

高二数学题(人教版)

篇7:高二数学题(人教版)

一、选择题:(本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。)

1.已知集合A={1,2},B={,},若A∩B={},则A∪B为

A.{-1,,1}B.{-1,}C.{1,}D.{,1,}

2.若复数是实数,则的值为()

A.B.3C.0D.

3.设点P对应的复数为,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P的极坐标为()

A.(,)B.(,)C.(,)D.(,)

4.下列函数中与函数奇偶性相同且在(-∞,0)上单调性也相同的是()

A.B.C.D.

5.条件,条件,则p是q的()

A.充分不必要条件B.必要不充分条件充要条件D.既不充分又不必要条件

6.设偶函数在上为减函数,且,则不等式的

解集为()

A.B.C.D.

7.以下说法,正确的个数为:()

①公安人员由罪犯的脚印的尺寸估计罪犯的身高情况,所运用的是类比推理.

②农谚“瑞雪兆丰年”是通过归纳推理得到的.

③由平面几何中圆的一些性质,推测出球的某些性质这是运用的类比推理.

④个位是5的整数是5的倍数,2375的个位是5,因此2375是5的倍数,这是运用的演绎推理.

A.0B.2C.3D.4

8.若,,,则的大小关系是

A.B.C.D.

9.用数学归纳法证明“时,从“到”时,左边应增添的式子是()

A.B.C.D.

10.下列说法:

(1)命题“,使得”的否定是“,使得”

(2)命题“函数在处有极值,则”的否命题是真命题

(3)是(,0)∪(0,)上的奇函数,时的解析式是,则的解析式为

其中正确的说法的个数是()

A.0个B.1个C.2个D.3个

11.定义在R上的函数f(x)的图像关于点(-,0)成中心对称且对任意的实数x都有f(x)=-f(x+)且f(-1)=1,f(0)=-2,则f(1)+f(2)+……+f()=()

A.1B.0C.-1D.2

12.已知函数=,=,若至少存在一个∈[1,e],使得成立,则实数a的范围为

A.[1,+∞)B.(0,+∞)C.[0,+∞)D.(1,+∞)

二、填空题:(本大题共4小题,每小题5分,共20分.)

13.已知,且,则等于________??????????_________

14.观察下列等式:,…,根据上述规律,第五个等式为________??????????_________

15.已知两曲线参数方程分别为和,它们的交点坐标为________??????????_________

16.有下列几个命题:

①函数y=2x2+x+1在(0,+∞)上是增函数;②函数y=在(-∞,-1)∪(-1,+∞)上是减函数;③函数y=的单调区间是[-2,+∞);④已知f(x)在R上是增函数,若a+b>0,则有f(a)+f(b)>f(-a)+f(-b).其中正确命题的序号是______________

三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤。

17.(本小题满分10分)设命题:实数满足,其中;命题:实数满足且的必要不充分条件,求实数的取值范围.

18.(本小题满分12分)直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的方程为,直线方程为(t为参数),直线与C的公共点为T.

(1)求点T的极坐标;

(2)过点T作直线,被曲线C截得的线段长为2,求直线的极坐标方程.

19.(本小题满分12分)已知为实数,.

(Ⅰ)若,求在上的值和最小值;

(Ⅱ)若在和上都是递增的,求的取值范围.

20.(本小题满分12分)已知函数.

(1)若是函数的极值点,求曲线在点处的切线方程;

(2)若函数在上为单调增函数,求的取值范围;

21.(本小题满分12分)已知函数(x∈R,且x≠2).

(1)求f(x)的单调区间;

(2)若函数与函数f(x)在x∈[0,1]上有相同的值域,求a的值.

22.(本小题满分12分)已知定义在上的三个函数,,,且在处取得极值.

(Ⅰ)求a的值及函数的单调区间.

(Ⅱ)求证:当时,恒有成立.

篇8:高二数学题(人教版)

一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.

1.已知抛物线的标准方程为x2=4y,则下列说法正确的是()

A.开口向左,准线方程为x=1B.开口向右,准线方程为x=﹣1

C.开口向上,准线方程为y=﹣1D.开口向下,准线方程为y=1

2.命题p:?x0>1,lgx0>1,则¬p为()

A.?x0>1,lgx0≤1B.?x0>1,lgx0<1C.?x>1,lgx≤1D.?x>1,lgx<1

3.在平行六面体ABCD﹣A1B1C1D1中,化简++=()

A.B.C.D.

4.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,事件A表示“2名学生全不是男生”,事件B表示“2名学生全是男生”,事件C表示“2名学生中至少有一名是男生”,则下列结论中正确的是()

A.A与B对立B.A与C对立

C.B与C互斥D.任何两个事件均不互斥

5.已知甲、乙两名同学在某项测试中得分成绩的茎叶图如图所示,x1,x2分别表示知甲、乙两名同学这项测试成绩的众数,s12,s22分别表示知甲、乙两名同学这项测试成绩的方差,则有()

A.x1>x2,s12s22

C.x1=x2,s12=s22D.x1=x2,s12

6.设直线l的方向向量是=(﹣2,2,t),平面α的法向量=(6,﹣6,12),若直线l⊥平面α,则实数t等于()

A.4B.﹣4C.2D.﹣2

7.执行如图程序框图,若输出的S值为62,则判断框内为()

A.i≤4?B.i≤5?C.i≤6?D.i≤7?

8.下列说法中,正确的是()

A.命题“若x≠2或y≠7,则x+y≠9”的逆命题为真命题

B.命题“若x2=4,则x=2”的否命题是“若x2=4,则x≠2”

C.命题“若x2<1,则﹣11”

D.若命题p:?x∈R,x2﹣x+1>0,q:?x0∈(0,+∞),sinx0>1,则(¬p)∨q为真命题

9.知点A,B分别为双曲线E:﹣=1(a>0,b>0)的两个顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则双曲线E的离心率为()

A.B.2C.D.

10.如图,MA⊥平面α,AB?平面α,BN与平面α所成的角为60°,且AB⊥BN,MA=AB=BN=1,则MN的长为()

A.B.2C.D.

二、填空题:本大题共5小题,每小题5分,共25分)

11.若双曲线﹣=1的焦距为6,则m的值为.

12.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中,抽取一个容量为100的样本,则应从丙地区中抽取个销售点.

13.已知两个具有线性相关关系的变量x与y的几组数据如下表

x3456

y

m4

根据上表数据所得线性回归直线方程为=x+,则m=.

14.在长为4cm的线段AB上任取一点C,现作一矩形,邻边长等于线段AC,CB的长,则矩形面积小于3cm2的概率为.

15.已知圆E:(x+1)2+y2=16,点F(1,0),P是圆E上的任意一点,线段PF的垂直平分线和半径PE相交于点Q,则动点Q的轨迹方程为.

三、解答题:本大题共6小题,共75分.

16.已知实数p:x2﹣4x﹣12≤0,q:(x﹣m)(x﹣m﹣1)≤0

(Ⅰ)若m=2,那么p是q的什么条件;

(Ⅱ)若q是p的充分不必要条件,求实数m的取值范围.

17.一果农种植了1000棵果树,为估计其产量,从中随机选取20棵果树的产量(单位:kg)作为样本数据,得到如图所示的频率分布直方图.已知样本中产量在区间(45,50]上的果树棵数为8,.

(Ⅰ)求频率分布直方图中a,b的值;

(Ⅱ)根据频率分布直方图,估计这20棵果树产量的中位数;

(Ⅲ)根据频率分布直方图,估计这1000棵果树的总产量.

18.盒子中有5个大小形状完全相同的小球,其中黑色小球有3个,标号分别为1,2,3,白色小球有2个,标号分别为1,2.

(Ⅰ)若从盒中任取两个小球,求取出的小球颜色相同且标号之和小于或等于4的概率;

(Ⅱ)若盒子里再放入一个标号为4的红色小球,从中任取两个小球,求取出的两个小球颜色不同且标号之和大于3的概率.

19.如图,等边三角形OAB的边长为8,且三个顶点均在抛物线E:y2=2px(p>0)上,O为坐标原点.

(Ⅰ)证明:A、B两点关于x轴对称;

(Ⅱ)求抛物线E的方程.

20.如图,在三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,AB=5,BC=4,AC=CC1=3,D为AB的中点

(Ⅰ)求证:AC⊥BC1;

(Ⅱ)求异面直线AC1与CB1所成角的余弦值;

(Ⅲ)求二面角D﹣CB1﹣B的余弦值.

21.已知椭圆C:+=1(a>b>0)的左、右焦点为F1(﹣2,0),F2(2,0),点M(﹣2,)在椭圆C上.

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)已知斜率为k的直线l过椭圆C的右焦点F2,与椭圆C相交于A,B两点.

①若|AB|=,求直线l的方程;

②设点P(,0),证明:?为定值,并求出该定值.

篇9:高二数学题

题型1:统计概念及简单随机抽样

例1.为调查参加运动会的1000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )

A.1000名运动员是总体 B.每个运动员是个体

C.抽取的100名运动员是样本 D.样本容量是100

解析:这个问题我们研究的是运动员的年龄情况,因此应选D。

答案:D

点评:该题属于易错题,一定要区分开总体与总体容量、样本与样本容量等概念。

例2.今用简单随机抽样从含有6个个体的总体中抽取一个容量为2的样本。问:① 总体中的某一个体在第一次抽取时被抽到的概率是多少?② 个体不是在第1次未被抽到,而是在第2次被抽到的概率是多少?③ 在整个抽样过程中,个体被抽到的概率是多少?

解析:(1),(2),(3)。

点评:由问题(1)的解答,出示简单随机抽样的定义,问题( 2 )是本讲难点。基于此,简单随机抽样体现了抽样的客观性与公平性。

题型2:系统抽样

例3.为了了解参加某种知识竞赛的1003名学生的成绩,请用系统抽样抽取一个容量为50的样本。

解析:(1)随机地将这1003个个体编号为1,2,3,...,1003.

(2)利用简单随机抽样,先从总体中剔除3个个体(可利用随机数表),剩下的个体数1000能被样本容量50整除,然后再按系统抽样的方法进行.

点评:总体中的每个个体被剔除的概率相等,也就是每个个体不被剔除的概率相等.采用系统抽样时每个个体被抽取的概率都是,所以在整个抽样过程中每个个体被抽取的概率仍然相等,都是。

例4.(2004年福建,15)一个总体中有100个个体,随机编号为0,1,2,...,99,依编号顺序平均分成10个小组,组号依次为1,2,3,...,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k小组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是___________.

剖析:此问题总体中个体的个数较多,因此采用系统抽样.按题目中要求的规则抽取即可.

∵m=6,k=7,m+k=13,∴在第7小组中抽取的号码是63.

答案:63

点评:当总体中个体个数较多而差异又不大时可采用系统抽样。采用系统抽样在每小组内抽取时应按规则进行。

更多推荐

高二数学题练习精选