cogo是什么意思o在线翻译读音例句-比利时旅游
2023年11月7日发(作者:concord)
2023年江苏省南京市江宁区小升初数学试卷
一、看清算式,巧思妙算。(28分)
1.(10分)直接写出得数。
﹣= ÷= ×+÷3=
×= 0.3×= ﹣×= +﹣+=
2.4×5%= 5﹣1.7=
0.25×12=
2.(12分)计算下面各题(能简算的要简算)。
12×45+540÷45 2.5×3.6+0.4
4.56﹣
+3.44﹣ ×+÷ +)] ×[﹣(
3.(6分)解方程或解比例。
0.4x+0.6×16=16
x﹣25%x=0.25
=:
二、用心思考,正确填写。(每题2分,共22分)
4.(2分)2023年第一季度,南京市GDP(国民生产总值)约为423024000000元,省略“亿”后面的尾数
约是 亿元;2022年第一季度,南京市GDP约为4000亿元,南京2023年第一季度GDP
比
2022年第一季度约增加了 %。(百分号前保留一位小数)
5.(2分) :32= (小数)==14÷ = %
6.(2分)1200平方米= 公顷
0.45时= 分
7.(2分)的分数单位是,再添上 个这样的分数单位就是最小的质数。
(
﹣)×7×11
8.(2分)观察如图直线上的点,点A表示的数是 ,点B与点C表示的数的最简整数比
是 。
9.(2分)江宁某小学武术队男生人数比女生人数多40%,女生人数占武术队总人数的
武术队男生一共有35人,女生有 人。
第1页(共29页)
;据统计,
10.(2分)学校进行跳绳比赛,王老师在记录某班同学的跳绳成绩时,以120个为标准,成绩记录如表,
该班平均每人跳绳 个。如果以100个为标准记录该班同学的成绩,1
号同学的成绩应记
为 。
编号 1号 2号 3号 4号 5号 6号
成绩/个 ﹣5 +1 +9 ﹣6 0 ﹣11
11.(2分)汪明在信息课上编制了一个计算小程序,输入一个数后,小程序通过计算会输出另一个数(如
(填写: 是偶数。
图)。如果用a表示输入的数,那么输出的数是 ,输出的数
“不可能”、“可能”或“一定”)
12.(2分)把一张长15厘米,宽20厘米的长方形纸的一角折起(如图),如果阴影部分的面积是250平方
厘米,那么折起部分(白色三角形)的面积是 平方厘米;如果∠2=36°,那么∠
1
= °。
13.(2分)小明在探索圆的面积计算方法时,将一个半径4厘米的圆剪拼成一个近似梯形,这个近似梯形
的面积是 平方厘米,周长是 厘米。
14.(2分)将如图的直角三角形分别绕三条边所在的直线旋转一周,得到3个不同的立体图形,其中体积
最大是 立方厘米,最小是 立方厘米。
三、反复比较,准确选择。(共16分)
15.(1分)下面的描述中不符合生活常识的是( )
A.一枚1元硬币厚度约是2毫米
第2页(共29页)
B.小明家餐桌的面积为200平方厘米
C.小红家距离学校约600米,他上班大约步行1100步
16.(1分)下列算式中,计算结果最接近1的是( )
A.
B.× C.÷
17.(1分)一个近似于长方体的物体,长1.5分米,宽7厘米,高6毫米,它有可能是( )
A.公交卡 B.手机 C.文具盒
18.(1分)小明家书房长3.8米,宽3.3米,小明用竖式计算书房的面积(如图),虚线框出的部分计算的
是( )的面积。
A.①+② B.②+④ C.③+④
( ) 米,第二段占这根绳子的,那么这两段绳子相比较,
19.(1分)一根绳子剪成两段,第一段长
A.第一段长 B.第二段长 C.同样长
20.(1分)要拼成一个从正面、上面看到的形状都是
A.4 B.6 C.5 D.7
,至少需要( )个小正方体。
21.(1分)下列不是轴对称图形是( )
A.
B.
C.
22.(1分)一块三角板,其中一个角是30°,把这块三角板按1:3的比画在图纸上,这个角是( )°
A.10 B.30 C.90
23.(1分)旋转转盘的指针,如果指针箭头停在偶数位置,就能得到奖品。笑笑第一次旋转的结果如图,
第3页(共29页)
她得奖了。如果再旋转一次,这次她( )
A.不可能得奖 B.得奖可能性很小
C.得奖可能性很大
24.(1分)有圆柱与圆锥各一个,圆柱与圆锥底面直径的比是2:3,圆柱与圆锥高的比是4:3,圆锥的体
积是5.4立方米,圆柱的体积是( )立方米。
A.3.2 B.4.8 C.9.6 D.14.4
25.(1分)如图,把三角形ABC的边AC延长到点D,那么∠1+∠2( )∠4。
A.小于 B.等于 C.大于
26.(1分)把正方体纸盒沿着画有粗线的棱剪开后展开(如图),展开图的形状是( )
A.
B. C.
27.(1分)已知如图中阴影部分的面积是40平方厘米,圆环的面积是( )平方厘米。
A.160 B.40π C.80π
28.(1分)图②、图③、图④是用长方形、正方形、等腰三角形从图①中框出的一部分,图②、图④是图
①的一半,这四个图形中阴影部分与空白部分的面积比,( )
第4页(共29页)
A.图①=图②=图③=图④ B.图①=图②=图③
C.图①=图②=图④
29.(1分)下列说法正确的有( )个。
①0.15与0.150的大小与意义是相同的。
②正方形的边长与面积不成正比例关系。
③大于2的偶数都是合数。
④在100克水中加入10克盐,盐水的含盐量为10%。
⑤一个等腰三角形相邻两边长度比是2:1,如果周长是20厘米,腰长8厘米或5厘米。
A.2 B.3 C.4
30.(1分)把一个底面直径和高都是4厘米的圆柱分成若干份,照如图的样子拼成一个长方体,拼成长方
体的表面积比原来增加( )平方厘米。
A.32 B.16 C.16π
四、明确要求,动手操作。(共8分)
31.(8分)学当设计师。
王大爷家门前有一块空地(每格边长代表10m),如图,他想充分利用,请根据描述帮王大爷进行设计。
(1)王大爷计划在空地的西南角围一块长方形花园,四个顶点的位置分别是A(0,4),B(0,0),C
(6,0),D(6,4),请画出这个花园;
(2)王大爷发现这块长方形花园面积过大,不够协调,需要把它按1:2缩小,且位置改在原来这个花
园的东面,请画出缩小后的花园;
(3)王大爷准备在空地的东北角围一块三角形草坪,草坪的面积和现在缩小后的长方形花园面积相等,
请画出这块三角形草坪;
(4)西面的空地王大爷准备用来种蔬菜。他为了浇灌方便,准备在(0,0)的北偏东45°方向点P(a,
第5页(共29页)
5)处安装一个水龙头,请在图中用“●”标出P点的位置。
五、活用知识,解决问题(共26分。)
32.(4分)六(4)班44名同学和8位老师一起参加社会实践活动(参观科技馆),活动过程中遇到了一些
数学问题,让我们一起来看看吧!
在科技馆,六(4)班有40名同学参与了“航空载荷体验”项目,六(四)班学生的参与率是百分之几?
(得数百分号前保留一位小数。)
33.(8分)长征二号F遥十三运载火箭整流罩的底面直径为3.2米。科技馆存放着按一定比例制作的长征
二号F遥十三运载火箭的整流罩模型(如图)。
(1)科技馆制作整流罩模型的比例是多少?
(2)该整流罩模型的体积是多少?
(3)如果用一个长方体玻璃盒来存放这个模型,制作这个玻璃盒至少要多少平方分米的玻璃?
34.(4分)为了方便参加“球形屏幕观影”项目,44名同学们分为8个小组,每个老师负责一组,男老师
负责的小组每组有6名学生,女教师负责的小组每组有4名学生,正好安排完。你知道男教师、女教师
各有多少人?
第6页(共29页)
35.(4分)同学们根据此次活动汽车行驶情况制作了统计图,根据统计图解答下列问题。
(1)在14:20~15:00期间,汽车行驶的路程与时间
。(选择填写:成正比例关系、成
反比例关系、不成比例关系。)
(2)本次社会实践活动汽车往返的平均速度是多少?
36.(4分)科技馆“七色彩虹”项目的门票20元/张,优惠政策有两种:满50张可以购买团体票,团体票
打六折;购买学生票打五折。如果六(4)班44名学生和8名老师都参加“七色彩虹”项目,怎样购票
更划算?(请通过计算说明)
37.(2分)在科技馆,莉莉参与了“制作航天材料”体验项目,航天器上的一种合金材料是由A、B、C三
种金属材料制成的。其中A金属与B金属质量的比是1:3,C金属质量占合金材料总质量40%。莉莉使
用B金属5.4克制作了这种合金材料。根据以上信息,算一算莉莉制成的这种合金材料共重多少克?
第7页(共29页)
2023年江苏省南京市江宁区小升初数学试卷
参考答案与试题解析
一、看清算式,巧思妙算。(28分)
1.(10分)直接写出得数。
﹣= ÷= ×+÷3=
×= 0.3×= ﹣×= +﹣+=
2.4×5%= 5﹣1.7=
0.25×12=
【分析】根据分数、小数、百分数加减乘除法的计算方法进行计算。
×+÷3,根据乘法分配律进行计算;
+﹣+,根据加法交换律和结合律进行计算。
【解答】解:
﹣= ÷= ×+÷3=
2.4×5%=0.12 5﹣1.7=3.3
×= 0.3×= ﹣×= +﹣+=
0.25×12=3
1
【点评】口算时,注意运算符号和数据,然后再进一步计算。
2.(12分)计算下面各题(能简算的要简算)。
12×45+540÷45 2.5×3.6+0.4
4.56﹣
+3.44﹣ ×+÷ +)] ×[﹣(
(
﹣)×7×11
【分析】(1)先同时计算乘法和除法,再算加法;
(2)先把3.6分解成(4×0.9),再根据乘法结合律简算;
(3)根据乘法分配律简算;
(4)根据加法交换律和减法的性质计算;
(5)先把除法变成乘法,再根据乘法分配律简算;
(6)先根据减法的性质计算中括号里面的,再算括号外的乘法。
第8页(共29页)
【解答】解:(1)12×45+540÷45
=540+12
=552
(2)2.5×3.6+0.4
=2.5×4×0.9+0.4
=10×0.9+0.4
=9+0.4
=9.4
(3)(
﹣)×7×11
=
×7×11﹣×7×11
=11﹣7
=4
(4)4.56﹣
+3.44﹣
=(4.56+3.44)﹣(
+)
=8﹣1
=7
(5)
×+÷
=
×+×
=(
+)×
=1×
=
第9页(共29页)
(6)×[﹣(+)]
=
×[﹣﹣]
=
×[1﹣]
=
×
=
【点评】本题考查了四则混合运算,注意运算顺序和运算法则,灵活运用所学的运算定律进行简便计算。
3.(6分)解方程或解比例。
0.4x+0.6×16=16
x﹣25%x=0.25
=:
【分析】先算乘法,然后再根据等式的性质,方程两边同时减去9.6,然后再同时除以0.4求解;
先化简,然后再根据等式的性质,方程两边同时除以
求解;
x=5×,然后再根据等式的性质方程两边再同时除以求解。
根据比例的基本性质,把比例化为方程
【解答】解:0.4x+0.6×16=16
0.4x+9.6=16
0.4x+9.6﹣9.6=16﹣9.6
0.4x=6.4
0.4x÷0.4=6.4÷0.4
x=16
x﹣25%x=0.25
x÷=0.25÷
x=0.25
x=3
第10页(共29页)
=:
x=5×
x=
x÷=÷
x=
【点评】熟练掌握比例的基本性质和等式的基本性质是解题的关键,注意等号要对齐。
二、用心思考,正确填写。(每题2分,共22分)
4.(2分)2023年第一季度,南京市GDP(国民生产总值)约为423024000000元,省略“亿”后面的尾数
约是 4230 亿元;2022年第一季度,南京市GDP约为4000亿元,南京2023年第一季度GDP比
2022
年第一季度约增加了 5.6 %。(百分号前保留一位小数)
【分析】省略“亿”后面的尾数,就是四舍五入到亿位,就是把亿位后的千万位上的数进行四舍五入,
再在数的后面写上“亿”字,据此解答。用南京2023年第一季度GDP减2022年第一季度GDP,再除
以2022年第一季度GDP即可。
【解答】解:423024000000元≈4230亿元
答:省略“亿”后面的尾数约是4230亿元
(4230﹣4000)÷4000
=230÷4000
≈5.6%
答:南京2023年第一季度GDP比2022年第一季度约增加了5.6%。
故答案为:4230;5.6。
【点评】本题考查了百分数的实际应用,还考查了求近似数,注意求近似数时要带计数单位。
5.(2分) 28 :32= 0.875 (小数)=
=14÷ 16 = 87.5 %
【分析】根据比与分数的关系=7÷8,再根据比的性质比的前、后项都乘4就是28:32;根据分数与
除法的关系
=7÷8,再根据商不变的性质被除数、除数都乘2就是14÷16;7÷8=0.875;把0.875的
小数点向右移动两位添上百分号就是87.5%。
【解答】解:28:32=0.875=
=14÷16=87.5%
第11页(共29页)
故答案为:28,0.875,16,87.5。
【点评】此题主要是考查小数、分数、除法、比、百分数之间的关系及转化。利用它们之间的关系和性
质进行转化即可。
6.(2分)1200平方米= 0.12 公顷
0.45时= 27 分
【分析】根据单位之间的换算,大单位换算成小单位要乘它们之间的进率;小单位换算成大单位要除以
它们之间的进率即可解答。
【解答】解:1200平方米=0.12公顷
0.45时=27分
故答案为:0.12;27。
【点评】本题主要考查单位之间的换算,大单位换算成小单位要乘它们之间的进率;小单位换算成大单
位要除以它们之间的进率。
7.(2分)
的分数单位是,再添上 7 个这样的分数单位就是最小的质数。
【分析】分数单位是把单位“1”平均分成若干份,表示其中的一份的数,的分数单位是;最小的质
数是2,2﹣
=,再添上7个这样的分数单位就是最小的质数。
【解答】解:由分析得知,
的分数单位是,再添上7个这样的分数单位就是最小的质数。
故答案为:
,7。
【点评】此题考查了分数单位和质数的知识,要求学生掌握。
8.(2分)观察如图直线上的点,点A表示的数是 ﹣1 ,点B与点C表示的数的最简整数比是 8
:
21 。
【分析】数轴是规定了原点(0点)、方向和单位长度的一条直线。原点的左边是负数,从原点向左的每
个单位长度分别是﹣1、﹣2、﹣3……;右边是正数,从原点向右每个单位长度分别是1、2、3……,把
一个单位长度平均分成3份,它的2份就是
;把一个单位长度平均分成4份,它的3份就是;据此
写出比并化简即可。
【解答】解:直线上的点A表示的数是﹣1;
第12页(共29页)
点B表示的数是;点C表示的数是1;点B与点C表示的数的最简整数比是:
:1
:(1×12) ×12)
=(
=8:21
答:点A表示的数是﹣1,点B与点C表示的数的最简单的整数比是8:21。
故答案为:﹣1;8:21。
【点评】解决本题的关键是根据题意判断把一个单位长度平均分成的份数及比的意义。
9.(2分)江宁某小学武术队男生人数比女生人数多40%,女生人数占武术队总人数的
武术队男生一共有35人,女生有 25 人。
【分析】把女生人数看作单位“1”,则男生人数是女生人数的(1+40%),武术队总人数是女生人数的
(1+1+40%),用除法计算,即可得女生人数占武术队总人数的分率;用武术队男生人数除以(1+40%),
即可得女生人数。
【解答】解:1÷(1+1+40%)
=1÷2.4
=
。
;据统计,
答:女生人数占武术队总人数的
35÷(1+40%)
=35÷1.4
=25(人)
答:女生有25人。
故答案为:
,25。
【点评】本题主要考查了百分数的实际应用,已知一个数的百分之几是多少,求这个数,用除法计算;
求一个数是另一个数的几分之几,用除法计算。
10.(2分)学校进行跳绳比赛,王老师在记录某班同学的跳绳成绩时,以120个为标准,成绩记录如表,
该班平均每人跳绳 118 个。如果以100个为标准记录该班同学的成绩,1号同学的成绩应记为
+15
个 。
第13页(共29页)
编号 1号 2号 3号 4号 5号 6号
成绩/个 ﹣5 +1 +9 ﹣6 0 ﹣11
【分析】求出实际跳的记录的总数量,然后除以6即可求出平均每人跳的记录的次数,然后加上120即
可;根据正、负数的意义,选1分钟跳100下作为标准水平,记为0,超过部分为正,不足的部分为负,
由此解答即可。
【解答】解:[(﹣5)+1+9+(﹣6)+0+(﹣11)]÷6
=﹣12÷6
=﹣2(个)
﹣2+120=118(个)
1号:﹣5+120﹣100=+15(个)
答:该班平均每人跳绳118个。如果以100个为标准记录该班同学的成绩,1号同学的成绩应记为+15
个。
故答案为:118,+15个。
【点评】此题首先要知道以谁为标准,规定超出标准的为正,低于标准的为负,由此用正负数解答问题。
11.(2分)汪明在信息课上编制了一个计算小程序,输入一个数后,小程序通过计算会输出另一个数(如
(填写:“不 一定 是偶数。
图)。如果用a表示输入的数,那么输出的数是 (4a﹣2) ,输出的数
可能”、“可能”或“一定”)
【分析】根据奇数与偶数的初步认识即可解答。
【解答】解:如果用a表示输入的数,那么输出的数是(4a﹣2),输出的数一定是偶数。
故答案为:(4a﹣2);一定。
【点评】本题主要考查奇数与偶数的初步认识。
12.(2分)把一张长15厘米,宽20厘米的长方形纸的一角折起(如图),如果阴影部分的面积是250平方
厘米,那么折起部分(白色三角形)的面积是 50 平方厘米;如果∠2=36°,那么∠1= 72 °。
第14页(共29页)
【分析】根据长方形的面积=长×宽,求出面积,再减去阴影部分的面积,就是白色三角形的面积;180°
减去∠2,再除以2,就是∠1的值。
【解答】解:15×20﹣250
=300﹣250
=50(平方厘米)
(180﹣36)÷2
=144÷2
=72(°)
答:折起部分(白色三角形)的面积是50平方厘米;如果∠2=36°,那么∠1=72°。
故答案为:50;72。
【点评】熟练掌握长方形的面积公式和平角的定义,是解答此题的关键。
13.(2分)小明在探索圆的面积计算方法时,将一个半径4厘米的圆剪拼成一个近似梯形,这个近似梯形
的面积是 50.24 平方厘米,周长是 25.56 厘米。
【分析】根据圆面积公式的推导方法可知,把一个圆剪拼成一个近似的梯形,面积不变。拼成的梯形的
面积等于圆的面积,周长等于圆的周长的一半加上4条半径的长。再根据圆的周长公式:C=2πr,圆面
积公式:S=πr
2
,把数据代入公式解答。
【解答】解:3.14×4
2
=50.24(平方厘米)
3.14×4×2÷2+4×4
=12.56+16
=28.56(厘米)
答:这个近似梯形的面积是50.24平方厘米,周长是25.56厘米。
故答案为:50.24;25.56。
【点评】此题考查圆的周长和面积公式及应用。
14.(2分)将如图的直角三角形分别绕三条边所在的直线旋转一周,得到3个不同的立体图形,其中体积
最大是 50.24 立方厘米,最小是 30.144 立方厘米。
第15页(共29页)
【分析】根据圆锥的体积公式:V=
πrh,把数据代入公式求出它们的体积,然后进行比较即可。
2
【解答】解:①以4厘米为轴
×π×3×4
2
=
×π×9×4
=12π(立方厘米)
②以3厘米为轴
×π×4×3
2
=
×π×16×3
=16π(立方厘米)
③以5厘米为轴
底面半径:3×4÷2×2÷5
=12÷5
=2.4(厘米)
×π×2.4×5
2
=
×π×5.76×5
=9.6π(立方厘米)
16π>12π>9.6π
16π=50.24(立方厘米)
9.6π=30.144(立方厘米)
答:体积最大是50.24立方厘米,体积最小是30.144立方厘米。
故答案为:50.24,30.144。
【点评】此题主要考查圆锥的体积公式的灵活运用,关键是熟记公式。
三、反复比较,准确选择。(共16分)
15.(1分)下面的描述中不符合生活常识的是( )
A.一枚1元硬币厚度约是2毫米
第16页(共29页)
B.小明家餐桌的面积为200平方厘米
C.小红家距离学校约600米,他上班大约步行1100步
【分析】根据生活经验以及数据的大小,选择合适的计量单位,即可解答。
【解答】解:一枚1元硬币厚度约是2毫米,符合生活常识。
小明家餐桌的面积为200平方分米,原题不符合生活常识。
小红家距离学校约600米,他上班大约步行1100步,符合生活常识。
故选:B。
【点评】此题考查根据情景选择合适的计量单位,要注意联系生活实际、计量单位和数据的大小,灵活
地选择。
16.(1分)下列算式中,计算结果最接近1的是( )
A.
B.× C.÷
【分析】根据分数乘除法和加法的计算方法,分别求出各个算式的结果,用结果和1作差,相差最小则
结果最接近1。
【解答】解:
+=,1﹣=
×=,1﹣=
÷=,﹣1=
所以计算结果最接近1的是
÷。
故选:C。
【点评】本题主要考查了分数乘除法和加法的计算方法以及学生找最接近数的方法,相差最小则最接近。
17.(1分)一个近似于长方体的物体,长1.5分米,宽7厘米,高6毫米,它有可能是( )
A.公交卡 B.手机 C.文具盒
【分析】根据生活实际,普通手机,长1.5分米,宽7厘米,高6毫米。由此推测可能是手机。
【解答】解:一个近似于长方体的物体,长1.5分米,宽7厘米,高6毫米,它有可能是手机。
故选:B。
【点评】解答此题的关键是结合生活实际,明白1厘米实际有多长。
18.(1分)小明家书房长3.8米,宽3.3米,小明用竖式计算书房的面积(如图),虚线框出的部分计算的
第17页(共29页)
是( )的面积。
A.①+② B.②+④ C.③+④
【分析】依据小数乘法竖式计算方法和长方形、正方形面积解答即可。
【解答】解:①3×0.3=0.9(平方米)
②0.8×0.3=0.24(平方米)
0.9+0.24=1.14(平方米)
故选:C。
【点评】掌握小数乘法竖式计算方法是解题关键。
( ) 米,第二段占这根绳子的,那么这两段绳子相比较,
19.(1分)一根绳子剪成两段,第一段长
A.第一段长 B.第二段长 C.同样长
,据此比较分率大小即,那么第一段就占(1﹣)
【分析】一根绳子剪成两段,第二段占这根绳子的
可。
【解答】解:1﹣
=
因为
故选:B。
【点评】解答此题的关键是要明白题目中两个分数的不同意义。
,所以第二段长。
20.(1分)要拼成一个从正面、上面看到的形状都是
A.4 B.6 C.5 D.7
,至少需要( )个小正方体。
【分析】从正面、上面看到的形状都是
,则下层至少4个,上层至少1个小正方体,即
第18页(共29页)
。
【解答】解:至少需要5个小正方体。
故选:C。
【点评】本题考查从不同方向观察物体和几何图形,培养学生的观察能力。
21.(1分)下列不是轴对称图形是( )
A.
B.
C.
【分析】一个图形沿一条直线对折,直线两旁的图形完全重合,这样的图形叫做轴对称图形,折痕所在
的直线就是对称轴;据此进行判断即可。
【解答】解:上列不是轴对称图形是
故选:B。
。
【点评】判断一个图案是否是轴对称图形的关键是看在这个图形中能否找到一条直线,使图形沿着这条
直线对折后能够完全重合。
22.(1分)一块三角板,其中一个角是30°,把这块三角板按1:3的比画在图纸上,这个角是( )°
A.10 B.30 C.90
【分析】一块三角板,其中一个角是30°,把这块三角板按1:3的比画在图纸上,只是三角板三角板
的三条边按1:3的变化,三个角不变,这个角还是30°,据此解答。
【解答】解:这个角还是30°。
故选:B。
【点评】本题考查的是图形的放大和缩小,知道三个角不变是解答关键。
23.(1分)旋转转盘的指针,如果指针箭头停在偶数位置,就能得到奖品。笑笑第一次旋转的结果如图,
她得奖了。如果再旋转一次,这次她( )
第19页(共29页)
A.不可能得奖 B.得奖可能性很小
C.得奖可能性很大
【分析】在这6个数中,偶数有1个,奇数有5个,所以转到奇数的可能性大,据此解答即可。
【解答】解:在这6个数中,偶数有1个,奇数有5个,所以转到奇数的可能性大,所以如果再转一次,
这次她得奖可能性很小。
故选:B。
【点评】根据奇数和偶数的个数解答此题即可。
24.(1分)有圆柱与圆锥各一个,圆柱与圆锥底面直径的比是2:3,圆柱与圆锥高的比是4:3,圆锥的体
积是5.4立方米,圆柱的体积是( )立方米。
A.3.2 B.4.8 C.9.6 D.14.4
【分析】因为圆柱与圆锥底面直径的比是2:3,所以圆柱与圆锥底面半径的比也是2:3,设圆柱的底面
半径为“2”,则圆锥的底面半径为“3”,圆柱的高为“4”,圆锥的高为“3”,根据圆柱的体积计算公式
、圆锥的体积计算公式“V=πrh”分别求出圆柱、圆锥的体积,进而求出圆柱体积是圆锥h”
22
“V=πr
体积的几分之几,再根据分数乘法的意义,用圆锥的体积乘这个分数,就是圆柱的体积。
【解答】解:设圆柱的底面半径为“2”,则圆锥的底面半径为“3”,圆柱的高为“4”,圆锥的高为“3”。
圆柱的体积:π×2
2
×4=16π
圆锥的体积:
π×3×3=9π
2
16π÷9π=
5.4×
=9.6(立方米)
答:圆柱的体积是9.6立方米。
故选:C。
【点评】关键是根据圆柱、圆锥底面直径的比、高的比,求圆柱体积是圆锥体积的几分之几,然后再根
据分数乘法的意义解答。
25.(1分)如图,把三角形ABC的边AC延长到点D,那么∠1+∠2( )∠4。
第20页(共29页)
A.小于 B.等于 C.大于
【分析】根据三角形内角和为180°,可知∠1+∠2=180°﹣∠3,根据平角的度数为180°,可知∠4
=180°﹣∠3,所以∠1+∠2=∠4=180°﹣∠3。
【解答】解:∠1+∠2=180°﹣∠3
∠4=180°﹣∠3
所以∠1+∠2=∠4=180°﹣∠3。
故选:B。
【点评】本题考查角度的计算,理解三角形内角和与平角的度数是解决本题的关键。
26.(1分)把正方体纸盒沿着画有粗线的棱剪开后展开(如图),展开图的形状是( )
A.
B. C.
【分析】根据正方体的展开图即可解答。
【解答】解:把正方体纸盒沿着画有粗线的棱剪开后展开(如图),展开图的形状是
故选:A。
【点评】此题考查了正方体的展开图。
27.(1分)已知如图中阴影部分的面积是40平方厘米,圆环的面积是( )平方厘米。
。
A.160 B.40π C.80π
【分析】设大圆半径是R厘米,小圆半径是r厘米,根据阴影部分的面积,计算圆环的面积即可。
【解答】解:设大圆半径是R厘米,小圆半径是r厘米。
第21页(共29页)
(R﹣r)÷2=40
22
则R
22
﹣r=80
π×80=80π(平方厘米)
故选:C。
【点评】本题主要考查组合图形的面积的计算,关键注意利用转化思想解答。
28.(1分)图②、图③、图④是用长方形、正方形、等腰三角形从图①中框出的一部分,图②、图④是图
①的一半,这四个图形中阴影部分与空白部分的面积比,( )
答:圆环的面积是80π平方厘米。
A.图①=图②=图③=图④ B.图①=图②=图③
C.图①=图②=图④
【分析】根据空白部分和阴影部分面积的关系进行比较,即可得出结论。
【解答】解:①的阴影部分的面积等于圆的面积,空白部分的面积等于正方形面积减去圆的面积;
②的阴影部分的面积等于圆的面积的一半,空白部分的面积等于正方形面积减去圆的面积的一半;
③的阴影部分的面积等于圆的面积的四分之一,空白部分的面积等于正方形面积减去圆的面积的四分之
一;
④的阴影部分的面积等于圆的面积的一半,空白部分的面积等于正方形面积减去圆的面积的一半。
所以四幅图中阴影部分的面积与空白部分的面积的比相等。
故选:A。
【点评】本题主要考查组合图形的面积的计算,关键利用转化思想比较解答。
29.(1分)下列说法正确的有( )个。
①0.15与0.150的大小与意义是相同的。
②正方形的边长与面积不成正比例关系。
③大于2的偶数都是合数。
④在100克水中加入10克盐,盐水的含盐量为10%。
第22页(共29页)
⑤一个等腰三角形相邻两边长度比是2:1,如果周长是20厘米,腰长8厘米或5厘米。
A.2 B.3 C.4
【分析】根据小数的意义,判断两个相关联的量成正比例的方法,以及质数、合数、偶数的含义,含盐
率的求解方法,和按比分配、等腰三角形的特征、三角形三边的关系,对各个说法进行分析,找出正确
的说法即可求解。
【解答】解:①0.15表示15个0.01,0.150表示150个0.001,虽然0.15和0.150的大小相同,但是它们
的意义不同;所以本说法错误;
②正方形的面积÷边长=边长(不一定),是比值不一定,所以正方形的面积和边长不成正比例;本说法
正确;
③大于2的偶数的因数除了1和它本身之外,都还有因数2,所以它至少有3个因数,都是合数;本说
法正确;
④
×100%≈9.1%,在100克水中加入10克盐,盐水的含盐量为9.1%,不是10%;本说法错误;
⑤三角形两边之和大于第三边,所以这个等腰三角形三边的比只能是2:2:1,不能是1:1:2;
20×
=8(厘米)
腰长只能是8厘米,不能是5厘米;本说法错误。
综上可知说法正确的只有②、③两个。
故选:A。
【点评】本题综合性强,考查知识点比较多,注意基础知识的掌握。
30.(1分)把一个底面直径和高都是4厘米的圆柱分成若干份,照如图的样子拼成一个长方体,拼成长方
体的表面积比原来增加( )平方厘米。
A.32 B.16 C.16π
【分析】从圆柱体积公式的推导过程可知:把圆柱切拼成一个近似长方体后体积不变。拼成长方体的表
面积比原来圆柱的表面积增加了两个以圆柱的高为长,底面半径为宽的长方形的面积,因此根据长方形
的面积公式:S=ab,把数据代入公式即可解答。
【解答】解:4÷2=2(厘米)
4×2×2
第23页(共29页)
=8×2
=16(平方厘米)
答:比圆柱的表面积增加了16平方厘米。
故选:B。
【点评】此题考查的目的是理解掌握圆柱体积公式的推导过程及应用,圆柱的表面积公式、长方体的表
面积公式及应用。
四、明确要求,动手操作。(共8分)
31.(8分)学当设计师。
王大爷家门前有一块空地(每格边长代表10m),如图,他想充分利用,请根据描述帮王大爷进行设计。
(1)王大爷计划在空地的西南角围一块长方形花园,四个顶点的位置分别是A(0,4),B(0,0),C
(6,0),D(6,4),请画出这个花园;
(2)王大爷发现这块长方形花园面积过大,不够协调,需要把它按1:2缩小,且位置改在原来这个花
园的东面,请画出缩小后的花园;
(3)王大爷准备在空地的东北角围一块三角形草坪,草坪的面积和现在缩小后的长方形花园面积相等,
请画出这块三角形草坪;
(4)西面的空地王大爷准备用来种蔬菜。他为了浇灌方便,准备在(0,0)的北偏东45°方向点P(a,
5)处安装一个水龙头,请在图中用“●”标出P点的位置。
【分析】(1)根据数对的意义:第一个数表示列,第二个数表示行,描出4个点,连接即可得出四边形。
(2)原来的长方形的长和宽分别为6个格和4个格,按1:2缩小后长和宽分别为3格和2格,据此在
原来这个花园的东面画出即可。
第24页(共29页)
(3)画一个底为3,高为4的三角形即可。
(4)(0,0)的北偏东45°方向与第5列交点处即是P点的位置。
【解答】解:如图:
【点评】解决本题根据数对的意义描点连线,再结合题意解答问题。
五、活用知识,解决问题(共26分。)
32.(4分)六(4)班44名同学和8位老师一起参加社会实践活动(参观科技馆),活动过程中遇到了一些
数学问题,让我们一起来看看吧!
在科技馆,六(4)班有40名同学参与了“航空载荷体验”项目,六(四)班学生的参与率是百分之几?
(得数百分号前保留一位小数。)
【分析】根据“参与率=
【解答】解:
≈0.909
=90.9%
答:六(四)班学生的参与率约是90.9%。
【点评】此类题都有一定的计算公式,平时注意收集、整理,以备运用。
33.(8分)长征二号F遥十三运载火箭整流罩的底面直径为3.2米。科技馆存放着按一定比例制作的长征
二号F遥十三运载火箭的整流罩模型(如图)。
(1)科技馆制作整流罩模型的比例是多少?
(2)该整流罩模型的体积是多少?
(3)如果用一个长方体玻璃盒来存放这个模型,制作这个玻璃盒至少要多少平方分米的玻璃?
第25页(共29页)
×100%”即可解答。
×100%
【分析】(1)根据比例尺的意义,图上距离:实际距离=比例尺,据此解答。
(2)根据圆锥的体积公式:V=
πrh,圆柱的体积公式:V=πrh,把数据代入公式解答。
22
(3)这个盒子的底面边长是4分米,高是16分米,根据长方体的表面积公式:S=(ab+ah+bh)×2,
把数据代入公式解答。
【解答】解:4分米:3.2米
=4分米:32分米
=4:32
=1:8
答:科技馆制作整流罩模型的比例是1:8。
(2)
×3.14×(4÷2)×(16﹣10)+3.14××(4÷2)×10
22
=
×3.14×4×6+3.14×4×10
=25.12+125.6
=150.72(立方分米)
答:该整流罩模型的体积是150.72立方分米。
(3)4×4×2+4×16×4
=16×2+64×4
=32+256
=288(平方分米)
答:制作这个玻璃盒至少要288平方分米的玻璃。
【点评】此题主要考查的目的是理解掌握比例尺的意义及应用,圆柱、圆锥的体积公式、长方体的表面
积公式及应用,关键是熟记公式。
34.(4分)为了方便参加“球形屏幕观影”项目,44名同学们分为8个小组,每个老师负责一组,男老师
第26页(共29页)
负责的小组每组有6名学生,女教师负责的小组每组有4名学生,正好安排完。你知道男教师、女教师
各有多少人?
【分析】假设都是男教师则共有学生6×8=48(人),比实际多了48﹣44=4(人),然后除以男、女老
师负责的每组的人数差,求出女老师负责的组数,即女老师的人数,然后进一步解答即可。
【解答】解:(6×8﹣44)÷(6﹣4)
=4÷2
=2(人)
8﹣2=6(人)
答:男教师有6人;女教师有2人。
【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程
进行解答。
35.(4分)同学们根据此次活动汽车行驶情况制作了统计图,根据统计图解答下列问题。
(1)在14:20~15:00期间,汽车行驶的路程与时间
成正比例关系 。(选择填写:成正比例关系、
成反比例关系、不成比例关系。)
(2)本次社会实践活动汽车往返的平均速度是多少?
【分析】两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的积一定,
这两种量就叫做成反比例的量,它们的关系叫做成反比例关系,据此结合路程÷时间=速度,解答即可。
【解答】解:(1)在14:20~15:00期间,汽车行驶的路程与时间成正比例关系.
(2)本次社会实践活动汽车去的时间是60分钟,返回的时间是40分钟。
(45×2)÷(60+40)
=90÷100
=0.9(千米/分)
答:本次社会实践活动汽车往返的平均速度是0.9千米/分。
故答案为:成正比例关系。
第27页(共29页)
【点评】此题属于辨识正反比例关系,就看这两个量是对应的比值(商)一定,还是乘积一定,再判断
即可。
36.(4分)科技馆“七色彩虹”项目的门票20元/张,优惠政策有两种:满50张可以购买团体票,团体票
打六折;购买学生票打五折。如果六(4)班44名学生和8名老师都参加“七色彩虹”项目,怎样购票
更划算?(请通过计算说明)
【分析】根据总价=单价×数量,分别求出两种优惠政策下,购票需要的钱数各是多少,再比较大小,
判断出选择哪种方案购票最合算即可。
【解答】解:(44+8)×20×60%
=52×20×0.6
=624(元)
20×8+44×20×50%
=160+440
=600(元)
600<624
答:44名学生购买学生票,8名老师正常购票更划算。
【点评】此题主要考查了最优化问题,解答此题的关键是熟练掌握单价、总价、数量的关系,分别求出
两种优惠政策下,购票需要的钱数各是多少。
37.(2分)在科技馆,莉莉参与了“制作航天材料”体验项目,航天器上的一种合金材料是由A、B、C三
种金属材料制成的。其中A金属与B金属质量的比是1:3,C金属质量占合金材料总质量40%。莉莉使
用B金属5.4克制作了这种合金材料。根据以上信息,算一算莉莉制成的这种合金材料共重多少克?
【分析】根据A金属与B金属质量的比是1:3,莉莉使用B金属5.4克制作了这种合金材料求出莉莉使
用A金属多少克;再根据C金属质量占合金材料总质量40%,求出A金属和B金属占合金材料总质量的
1﹣40%=60%;再用A金属和B金属的和除以60%即可解答。
【解答】解:5.4×
1÷3
=5.4÷3
=1.8(克)
(1.8+5.4)÷(1﹣40%)
=7.2÷60%
=12(克)
第28页(共29页)
答:莉莉制成的这种合金材料共重12克。
【点评】本题考查的是比的应用,理解和运用比的意义是解答关键。
第29页(共29页)
第一名的英文翻译英语怎么说-桂林医学院怎么样
更多推荐
学科网数学小学
发布评论