烙饼问题解决方法
(经典版)
编制人:__________________
审核人:__________________
审批人:__________________
编制学校:__________________
编制时间:____年____月____日
序言
下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!
并且,本店铺为大家提供各种类型的经典范文,如幼儿教案、小学教案、中学教案、教学活动、评语、寄语、发言稿、工作计划、工作总结、心得体会、其他范文等等,想了解不同范文格式和写法,敬请关
注!
Download tips: This document is carefully compiled by this editor.
I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!
In addition, this shop provides you with various types of classic sample essays, such as preschool lesson plans, elementary school lesson plans, middle school lesson plans, teaching activities, comments, messages, speech drafts, work plans, work summary, experience, and other sample essays, etc. I want to know Please pay attention to the different format and writing styles of sample essays!
烙饼问题解决方法
这是烙饼问题解决方法,是优秀的数学教案文章,供老师家长们参考学习。
烙饼问题解决方法第 1 篇
教学思考:
“烙饼问题”是人教版小学数学四年级上册“数学广角”的一节内容,教材意图通过“烙饼”这样的简单事例,让学生尝试从优化的角度在解决问题的多种方案中寻找最优的方案,初步体会优化思想在实际生活中的应用。数学思想和方法是数学知识在更高层次上的抽象和概括,它蕴涵在数学知识发生发展和应用的过程中。基于此,本课教学的关键是让学生在“做”的过程和“思考”的过程中感悟优化思想,初步形成从多种方案中寻找最优方案的意识,提高学生的解决问题的能力,积累数学活动经验,学会运用数学的思维方式进行思考,而非一味地在“难度”上做文章,任何超越学生学习能力的深度拓展和挖掘,都是没有价值的。
综观以往的诸多教学设计,“烙饼问题”一般的教学基本流程是:通过操作活动探索交流3张饼、4张饼、5张饼……的最佳(费时最少)烙法,从实践中发现规律,归纳并表述烙法的操作模式——如果要烙的张数是双数,2张2张地烙就可以了;如果要烙的张数是单数,可以先2张2张地烙,最后3张饼按上面的最优方法烙,最节省时间。进而引导学生通过不完全归纳发现烙饼所需的总时间与烙饼张数之
间的关系:总时间=张数X3(张数﹥1)
从数学建模的观点来看,这样的教学其缺陷是显而易见的——既没有对这一操作模式何以为最优做出“数学的分析”,也没有对烙饼张数与所需总时间之间何以存在这一关系做出“数学的解释”。这就造成了数学课堂教学中理性涵养的缺失,给人一种“不透彻”、“不解渴”的感觉,学生是“只知其然,不知其所以然”,并没有真正理解所获知识的数学意义。
那么,如何教学,既能通过抽象概括,归纳出一般的操作模式,又能对这一模式进行具有一般性的数学证明,以揭示知识的数学实质及其体现的数学思想呢?笔者做了一些尝试。
教学目标:
1、结合“烙饼”这一简单事例,在探索多种“烙法”的过程中,理解优化的思想,能从解决问题的多种方案中寻找出最优的方案,体会优化思想的应用。
2、在有效的数学活动中感悟思想,积累经验,初步形成从多种方案中寻找最优方案的意识,提高解决问题的能力。
3、体会数学在生活中的广泛应用,感受数学的魅力。
教学过程:
一、引入。
(出示)“香喷喷小吃店”做的烙饼很受欢迎,每天都有很多顾客排队购买。一只平底锅每次只能烙2张饼,两面都要烙,每面需要3分钟。
师:烙熟一张饼需要烙几次?最少需要几分钟?
明确:一张饼有正反两个面,如果要烙熟一张饼,两个面都需要烙,都要3分钟。
教师演示把烙饼的过程用简洁的文字和符号简单记录下来。
师:如果要烙2张饼呢?至少需要烙几次?最少需要几分钟?
引导:要使烙饼的时间尽可能短,就要充分利用“每次只能烙两张饼”这个条件,尽可能不要让锅空出来。
(设计意图:课始,通过对“烙饼信息”的辨析,澄清了问题,明确了方法——以书本充当烙饼作为操作道具,以简单符号记录烙法,为后续的探究和建模做好准备。)
二、展开。
师:如果要烙3张饼呢?至少需要烙几次?最少需要几分钟?
学生独立探究烙饼的方法。提醒:如果有困难,可以用书本、文具代替烙饼动手摆一摆,再像老师那样把烙饼过程记录下来。
全班交流,展示学生的两种代表性烙法:
烙法一:①正②正①反②反③正③反,共需3X4=12(分钟)烙法二:①正②正①反③正②反③反,共需3X3=9(分钟)
引导讨论:第一种烙法为什么会比第二种烙法多烙了一次,多花3分钟呢?
师:烙3张饼,有没有可能找到比烙3次更少的方法?能不能列个算式来说明一下为什么最少要烙3次?
学生讨论,全班交流。
引导发现:“烙饼”其实就是“烙面”, 锅里每次最多烙两张饼,也就是每次最多可以烙2个面。1张饼有2个面,3张饼共有3X2=6(面),6个面最少要烙6÷2=3(次),需要的总时间就是:3X3=9(分钟)
(设计意图: 首先借助学生中出现的不同方案的比较引发了学生之间的交流,确立烙法优劣的判别标准——是否“充分利用锅的空间”,进而通过“列个算式来说明”帮助学生进一步从数学的角度认识“充分利用锅的空间”的含义,实现了实践与理论的对接,为后续的烙法探究和规律揭示奠定了基础。)
师:如果要烙4张饼呢?试试看。
学生独立探究后,全班交流。
师:怎样列式计算来验证是不是最优方法?如果要烙5张饼至少需要几分钟?如果烙6张饼呢,需要烙几次?需要几分钟?为什么?
师:仔细观察,你能找到烙饼的张数与所需总时间的关系吗?
生:总时间 = 饼的张数X3
生:烙1张饼不符合这个规律,张数必须大于1。
师:再想一想,它们之间为什么有这种关系?
生:我发现,饼的张数 = 烙饼的次数,因为总时间=烙饼的次数X3(张数﹥1),所以总时间=饼的张数X3(张数﹥1)。
(设计意图:把理论计算和实践操作有机结合起来探究规律,使得基于演绎的数学模型和源于实践的操作模式融为一体。进而通过抽象概括,给出了一般的操作模式,并从数学角度给出了分析和解释,
更多推荐
烙饼,数学,学生,操作,问题,烙法,思想
发布评论