新人教版四年级数学《鸡兔同笼》教材分析
第一篇:新人教版四年级数学《鸡兔同笼》教材分析
教材分析
一、2013人教版教材编排“数学广角”的目的与意义
跟以往义务教育教材相比,这部分内容是新增加的,这是2013人教版教材的一大亮点。这部分内容对于大多数教师——尤其是对我们年轻教师来说是比较陌生的,所以在教学这部分内容时,往往会产生许多困惑与误解。因此,我们很有必要对教材编排这部分内容的目的与意义以及教学这部分内容时应注意什么等问题进行深入的思考与探讨。这套教材编排“数学广角”主要是想“通过简单的事例渗透一些重要的数学思想方法,或者介绍一些比较著名的数学问题,让学生在解决这些问题的过程中能主动尝试从数学的角度运用所学知识和方法寻找解决问题的策略,培养学生解决实际问题的实践经验和能力。最重要的目的是让学生通过接触这些重要的数学思想方法,经历猜想、实验、推理等数学探索的过程,激发学生对数学的好奇心和求知欲,增强学生学习数学的兴趣。”从而逐步实现《标准》所提出的教育教学目标。
比如“鸡兔同笼”问题,就是借助于古代的数学名题,教授学生运用猜测法、列举法、假设法、代数法等方法解决问题,教师在教学时不能仅仅局限于问题本身,而应通过解决问题帮助学生掌握解题的一般方法,获得必要的数学知识。因此,教师要充分了解人教版编排“数学广角”的这些目的和意义,才能在教学时做到心中有数,准确把握。
二、教材的地位和作用 “鸡兔同笼”问题最早出现在大约1500多年前的古代数学名著《孙子算经》中,成书时间大概从东晋、南北朝时代到隋、唐之间,其体例与《九章算术》相同。这一题型具有广泛的代表性,本课时向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,让学生展开讨论,应用假设的数学思想,从多角度思考,运用多种方法解题,学生可以应用假设法、代数方法、列表法等来解决问题。学生在具体的解决问题过程中,他们可以根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。
北师大版五年级数学教材中也有一个“鸡兔同笼”问题,题目是“鸡兔同笼,有20个头,54条腿,鸡、兔各有多少只?”,在解决问题的过程中,主要呈现了三种方法,都是通过假设举例与列表的方法,寻找解决问题的结果。其中第一张表格是常规的逐一举例法,根据鸡与
兔一共20只的条件,假设鸡只有1只,那么兔就有19只,腿共有78条„„在这样的逐一举例中,直至寻找到所求的答案;第二张表格是跳跃式列举法,先估计鸡与兔数量的可能范围,以减小举例的次数;第三张表格是采用取中列举的方法,由于鸡与兔一共20只,所以各取10只,接着在举例中根据实际的数据确定举例的方向,这样可以大大缩小举例的范围。我以为,需要注意的是,教材选“鸡兔同笼”这个题材,主要不是为了解决“鸡兔同笼”问题本身,而是要借助“鸡兔同笼”这个载体让学生经历列表、尝试和不断调整的过程,从中体会出解决问题的一般策略——列表。在后面相应的练习、复习中,相关的题目也都附上了表格,能够让学生较好的运用这种基本的解题策略解题。教学时,教师不宜补充其他解法,以免分散学生的注意力,影响学生对列表方法这一常用数学方法的掌握,更不应要求学生直接套用公式解题。而在本册教材中,对于“鸡兔同笼”问题,教材在教学目标上着重强调“尝试用不同的方法解决问题,并使学生体会代数方法的一般性,在解决问题的过程中培养学生的逻辑推理能力”,注重体现解决“鸡兔同笼”问题的不同思路和方法,让学生体会到数学问题在日常生活中的应用。这样编排的意义在于: 1)彰显数学的文化价值,激发学生的学习兴趣。
教材首先通过富有情趣的古代课堂,生动地呈现了在《孙子算经》中记载的“鸡兔同笼”问
题,这一素材的选用,一方面说明了我国的数学历史渊源流长,体现了所学数学内容的文化价值,另一方面通过小精灵的提问激发学生解答我国古代著名数学问题的兴趣。
2)体现解决“鸡兔同笼”问题的不同思路和方法。
考虑到《孙子算经》中原题的数据较大,教材在例1中从数据较小的问题入手,让学生尝试解决。体现了学生从猜测到用“假设法”和列方程的方法解决问题的探究过程,同时也表达了解决“鸡兔同笼”问题的不同思路和方法。教材除例1中运用的方法外,在阅读材料中也介绍了一种古人常用的解决该类问题的方法——砍足法,让学生感受古人巧妙的解题思路。
3)拓宽对“鸡兔同笼”问题的认识,明确其在生活中的应用。配合“鸡兔同笼”问题,教材在“做一做”和练习中安排了类似的一些习题,比如“龟鹤”问题、植树问题等生活中的一些实际问题,让学生进一步体会到这类问题在日常生活中的应用,并巩固用“假设法”或方程的方法来解决这类问题。
第二篇:鸡兔同笼教材分析
教材分析
“鸡兔同笼”师我国民间广为流传的古代数学趣题,最早出现再《孙子算经》中,教材一方面意在 让学生感受丰富的古代数学文化,另一方面在解决问题的过程中体验解决这类问题的不同方法和策略。通过经历猜测,列表,假设,推理等学习活动,培养学生初步的探究能力和逻辑推理能力。
数学广角重在向学生渗透一些数学思想方法,数学知识本身是非常重要的,但它并不是惟一的决定因素,真正对学生以后的学习、生活和工作长期起作用,并使其终生受益的是数学思想方法小学数学教学的根本任务是全面提高学生素质,其中最重要的因素是思维素质,而数学思想方法就是增强学生数学观念,形成良好思维素质的关键。
其教学方法与常规课不同但需要注意的是,教材选“鸡兔同笼”这个题材,主要并不是为了解决“鸡兔同笼”这个问题本身,而是要借助“鸡兔同笼”这个载体让学生经历列表,让学生在大胆的猜测、尝试和不断调整的过程中,体会出解决问题的一般策略——假设法。,并初步培养学生有顺序地、全面地思考问题的意识。
学情分析
对于四年级学生而言,学生的逻辑推理能力还不是很强,自主探究解决问题困难较大,因此,教学中教师要充分发挥引领作用,通过情景感受,化繁为简,猜测,列表,画图等方法帮助学生参与探究活动,使学生借助展开想象,促进数学思考,找到问题解决的方法
教学目标:尝试不同方法解决“鸡兔同笼”问题的过程,体验解决问题方法的多样性,并能运用画图法、列举法、假设法解决“鸡兔同笼”问题。
在解决问题的过程中渗透假设、有序等数学思想,培养学生的逻辑推理能力。教学重、难点
教学重点:理解并掌握“鸡兔同笼”问题的解题方法。教学难点:理解假设法解决“鸡兔同笼”问题的解题思路
本课我共设计了情境导入、探索新知、学以致用、课堂小结四个环节,探索新知是本节课教学的重点环节,也是理解的难点,教学中我为了体现化繁为简的思想,我提出:“为了便于研究,我们可以先从简单的问题入手,我们把题中的35个头和94只脚改成8个头和26只脚。这样就变成了例1 本环节让学生充分经历了观察、比较、想像、推理、归纳、概括等
数学活动与数学思考,探究用多种方法解决鸡兔同笼问题,充分的探究活动,既培养了学生的合理的推理能力,又有效促进了学生思维能力的发展。
我指出:这两种方法都是假设的,一种假设的全是鸡,一种假设的全是兔。像这样的方法,我们可以称它“假设法
首先介绍“孙子算经”渗透数学历史文化,激发学生的学习需求,并引领学生“发现数学信息”培养学生的审题习惯和能力,其次出示鸡兔同笼问题后,鼓励学生“大胆猜想,验证”,培养学生研究数学问题的策略意识。“化繁为简”。让孩子们初步体验感悟数学思想方法。
二、借助图表,尝试解决 1.尝试枚举,解决问题
通过化繁为简,出示变小后的数据,让学生猜测,并让同学感受猜测时也要遵循一定条件的必要性,为学生提供自主尝试解决问题的时机,再利用表格来辅助完善猜测的过程,通过不断调整,直到找到正确答案,从而引出列表法,强调学生在运用列表法解决鸡兔同笼问题时,最好选择“取中列表”的优化方法,通过提出鸡兔数量很多的情况,运用列表法解决有一些麻烦,不太合适,引出解决鸡兔同笼问题解法多样性的必要性。
2.联系表格,建立假设
由于同学们在平时解决问题的习惯都是用写算式来解决,通过同学们观察列表并整合自己预习的情况,建立假设,诱发学生探究算法的需求,借助表格让同学们发现解决鸡兔同笼问题的关键所在,初步感知解题的思路,首先,通过同学们的小合作探究,尝试运用算式表示出来,并汇报清楚自己的解题思路,其次,教师运用数型结合再一次形象的用图形和算式来解决鸡兔同笼问题,同时培养学生认真倾听和善于反思,善于总结的意识和能力

更多推荐

学生,数学,问题