有人认为祖冲之圆周率中的朒数。是用作圆的内接正多边形的方法求得的;而盈数则是用作圆的外切正多边形的方法求得的。祖冲之如果继续用刘徽的办法,从圆的内接正六边形算起,逐次加倍边数,一直算到内接正24576边形时,它的各边长度总和只能逐次接近并较小于圆周的周长,这正多边形的面积也只能逐次接近并较小于圆面积,从此求出的圆周率为3.14159261,也只能小于圆周率的真实数值,这就是朒 数。从祖冲之的数学水平来看,突破刘徽的方法,从外切正六边形算起,逐次试求圆周率,也是可能的。如果祖冲之把外切正六边形的边数成倍增加,到正24576边形时,他所求得的圆周率应该是3.1415927
0208。这个数是用外切方法求得的。由于外切正多边形各边边长的总和永远大于圆周的长度,这正多边形的面积也永远大于圆面积,所以这个数总比真实的圆周率大。用四舍五入法舍去小数点七位以后的数字,就得出盈数。
他写的《缀术》一书,被收入著名的《算经十书》中,作为唐代国子监算学课本,可惜后来失传了。《隋书·律历志》留下一小段关于圆周率π)的记载,祖冲之算出π的真值在3.14159263.1415927之间,相当于精确到小数第7位,简化成3.1415926,成为当时世界上最先进的成就。祖冲之入选世界纪录协会世界第一位将圆周率值计算到小数第7位的科学家,创造了中国纪协世界之最。这一纪录直到15世纪才由阿拉伯数学家卡西打破。
祖冲之还给出π的两个分数形式:22/7(约率)和355/113(密率),其中密率精确到小数第7位,在西方直到16世纪才由荷兰数学家奥托重新发现。祖冲之还和儿子祖暅之一起圆满地利用「牟合方盖」解决了球体积的计算问题,得到正确的球体积公式
祖冲之(公元429~公元500),是我国杰出的数学家、天文学家、文学家、地质学家、地理学家和科学家。南北朝时期人,汉族,字文远,生于宋文帝元嘉六年,卒于齐昏侯永元二年。祖籍范阳郡遒县(今河北涞水县),为避战乱,祖冲之的祖父祖昌由河北迁至江南。祖昌曾任刘宋的“大匠卿”,掌管土木工程,祖冲之的父亲也在朝中做官。从小受家庭
熏陶。
祖冲之,在世界数学史上第一次将圆周率(π)值计算到小数点后七位,即3.14159263.1415927之间。他提出约率22/7和密率355/113,这一密率值是世界上最早提出的,这项成果领先世界近一千年,所以有人主张叫它“祖率”,也就是圆周率的祖先。他将自己的数学研究成果汇集成一部著作,名为《缀术》,唐朝国学曾经将此书定为数学课本。他还经过多年测算,编制了一部新的历法——《大明历》。这是当时世界上最先进的历法。《大明历》第一次将“岁差”引进历法。提出在391年中设置144个闰月。推算出一回归年的长度为365.24281481日,误差只有50秒左右。[1]
祖冲之

更多推荐

圆周率,世界,外切,计算,小于