Tolstoy是什么意思stoy在线翻译读音例句-河北大学怎么样
2023年4月1日发(作者:假山设计)
Apracticalmodelofconvectivedynamicsfor
stellarevolutioncalculations
NeilMiller∗andPascaleGaraud†
∗DepartmentofAstronomyandAstrophysics,UniversityofCalifornia,SantaCruz
†DepartmentofAppliedMathematicsandStatistics,UniversityofCalifornia,SantaCruz
entmotionsintheinteriorofastarplayanimportantroleinitsevolution,since
theytransportchemicalspecies,rallgoalisto
constructapracticalturbulentclosuremodelforconvectivetransportthatcanbeusedinamulti-
dimensionalstellarevolutioncalculationincludingtheeffectsofrotation,shearandmagneticfields.
Here,wefocusonthefirststepofthistask:capturingthewell-knowntransitionfromradiativeheat
transporttoturbulentconvectionwithandwithoutrotation,aswellastheasymptoticrelationship
betwendthe
closuremodeldevelopedbyOgilvie(2003)andGaraudandOgilvie(2005)toincludeheattra王冕的诗代表作品 nsport
andcompareitwithexperimentalresultsofRayleigh-Benardconvection.
Keywords:Turbulentconvectionmodelling
PACS:;;;
INTRODUCTION
Tent
motionsareoftenthedominantmechanismofenergytransportinstellarconvective
zones,andcanincreasemomentumtransportandchemicalmixingbyseveralorders
rotatingastronomicalsystemswhereturbulenceisanisotropic,
Reynoldsstressesarethedominanttransportersofangularmomentumandtherefore
influencetheinternaldynamicsofthewholesystem.
Itiscurrentlynotpossibletoperforma3-Dnumericalsimul长安十二时辰张小敬结局 ationofconvectivemo-
r,whenconsideringstellarevolution
wearenotnecessarilyinterestedinthespecificdetailsoftheconvectivemotions,but
ratherinstatisticalpropertiessuchastheconvectivefl
long-termgoalistoconstructaclosedsetofevolutionequationsforthesestatistical
quantitiesintermsoflarge-scalesystemproperties(ity,rotation,shear),which
canbeusedinastellarevolutioncalculation.
InthispaperwefocusonmodellinghowtheconvectiveReynoldsstressesandheat
flspeciallyinterestedinapproximatelypredicting
theonsetofconvectionaswellastheasymptoticbehaviourofturbulenttransportfor
largeRayleighnumber;capturingtheonsetisrequiredforthestellarevolutionmodel
tte
predictionoftheasymptoticbehaviouroftheconvectiveturbulenceisimportantto
describetheamountofenergyandangularmomentumthatistransportedinthemajority
oftheconvectivezone.
Toquantifythequalityoftheproposedclosuremodelwetestitagainstlinearstability
ApracticalmodelofconvectivedynamicsforstellarevolutioncalculationsSeptember3,20071
analysis,numericalsimulationsandlaboratoryexperimentsoftherotatingRayleigh-
Benardproblem.
ROTATINGRAYLEIGHBENARDCONVECTION
ThetypicalRayleigh-Benardconvectionsetupisasfollows:tworigid,ideallyinfinite,
horizontalplatesseparatedbyadistanceDconfineaweaklycompressiblefluidbetween
raturedifference∆Tismaintainedbetweenahotbottomanda狡兔三窟比喻什么人 cooltop.
Thesystemisassumedtoberotatingwithaverageangularvelocity
Ω=Ωzwithgravity
g=−gerningequations
are
∂
i
u
i
=0,(1)
(∂
t
+u
k
∂
k
)u
i
+2
ijk
Ω
j
u
k
=−g
i−∂i
+∂
kk
u
i
,(2)
(∂
t
+u
k
∂
k
)=∂
kk
(3)
wherethedynamicalvariablesarethetemperatureoffset,thepressureperturbation
fromhydrostaticequilibriumandthefllowingparametersare
assumedtobeconstant:thecoefficientofexpansion,thekineticviscosityandthe
thermaldiffusivity.Sumsoverrepeatedindicesareimplied.
Thequalitativebehaviourofthesystemiscontrolledbythreedimensionlessquanti-
ties:theRayleighnumber,Ra≡g∆TD3/()(measuringtheratiobetweenbuoyancy
forcestoviscousstabilisingforces),theTaylornumber,Ta≡4D4Ω2/2(measuringthe
ratiobetweencentrifugal柳永雨霖铃背景故事 forcestoviscousforces),andthePrandtlnumber,Pr≡/
(measuringtheratiobetweentheviscousdiffusionrateandthethermaldiffusion经典语录 励志 rate)登鹳雀楼翻译 .
ForanygivenTaylornumberandPrandtlnumber,thereexistsacriticalRayleighnumber
(Ra
c
)abovewhichthesystemisconvectiveandbelowwhichthesystemisconductive.
WestrivetoconstructourmodeltomatchtheknownvariationofthecriticalRayleigh
verifythatatRayleighnum-
bersmuchlargerthancriticaltheNusseltnumberNu(ratiooftotalheatfluxtoconduc-
tiveheatflux)iscorrectlypredictedbythemodel.
CLOSUREMODEL
Ourgoalistocapturethebehaviourofturbulentconvectioninarotatingsystembothin
lopedasecond
orderclosuremodelusingthetechniquedescribedbyOgilvie(2003)andGaraudand
Ogilvie(2005).
Wewriteeachquantityasthesumofameanandfluctuatingpart(u=u+u′,=
+′,and=
+′)–intheRayleigh-Benardproblem,thesemeanquantitiesonly
varywithz.
Wedefinethefollowingcorrelationquantities:R
ij
=
′u′
i
,andQ=
Theexactequationsgoverningthemeanquantitiesare
∂
i
u
i
=0(4)
(∂
t
+u
k
∂
k
)u
i
+2
ijk
Ω
j
u
k
=−
g
i−∂i
+∂
kk
u
i−∂j
R
ij
(5)
(∂
t
+u
k
∂
k
)
=∂
ii
−∂
k
F
k
(6)
whilethosegoverningthesecondordercorrelationtermsaremodelledas
(∂
t
+u
k
∂
k
)R
ij
+R
ik
∂
k
u
j
+R
jk
∂
k
u
i
+2
ilm
Ω
l
R
jm
+2
jlm
Ω
l
R
im
+(F
i
g
j
+F
j
g
i
)
−∂kk
R
ij
=−C
1
−1
R
ij−C2
−1(R
ij−1
2
(+)∂
kk
F
i
=−C
6
−1
F
i−
1
d2
+
2
1NotethatC
1≃0.4,C2≃0.6,andC
≃12havealreadybeenfoundtogiveanadequatedescriptionof
theturbulentstressesinCouette-TaylorexperimentsbyGaraudandOgilvie(2005),butC
6
andC
7
remain
tobedetermined.
ApracticalmodelofconvectivedynamicsforstellarevolutioncalculationsSeptember3,20073
leigh-NusseltrelationadaptedfromChandrasekhar(1961).Thedashedlineisthe
modelpredictionforΩ=0,=10−3,=10−4generatedbyvaryingthetemperaturedifferencebetween
thetwoplates.
theboundaries,implyingR
ij
=F
i
=owerboundary=∆Tandattheupper
boundary=hetemperatureperturbationsarezeroatbothboundaries,Q=0.
InFigure1weshowtheNusseltnumber-Rayleighnumberrelationshipinthenon-
rotatingcaseforbothourmodelandtheselectionofexperimentaldatasummarisedby
Chandrasekhar(1961).Notethatourmodelshowsgoodagreementwiththeexperimen-
taldataforthecriticalRayleighnumberwherethetransitionbetweenconductive(Nu=
1)andconvective(Nu>1)elalsoreproducesthestan-
dardpowerlawrelationshipNu∝Ra1/3athighRayleighnumberwhichisanatural
consequenceofourselectionL=dwhenΩ=0(l’smixinglengththeory).
However,thegoodquantitativeagreementbetweentheexperimentaldataandthemodel
predictionforNuwasunexpectedsinceC
6
orC
7
,whichplayarolewhenthesystem
isconvective,sting
theseweshouldbeabletofurtherimprovethecorrespondenceofthemodeltoreality
forRa>Ra
c
.
Inrotatingsystems,convectionisknowntodelayoftheonsetofconvectionat
theory(asekhar(1961))predictsthatRa
c
∝
Ta2/3,withacoefficientofproportionalitywhichdependssomewhatontheboundary
re2,wecomparethisknown
relationshiptoourmodel(solidline).Thepredictedpowerlawmatcheslineartheory,
butthecoeffieless,
weconsidertheagreementsatisfactoryconsideringthesimplicityofthisclosuremodel.
Toconclude,wefindthattheclosuremodeladequatelydescribesboththeturbulent
convectiveheatfluxasafunctionofRayleighnumberintheabsenceofrotationaswell
rework,weintendto
comparethedegreetowhichthemodelmatchesnumericalsimulationsofdeveloped
convectionintherotatingRayleigh-Benardproblem(etal.(1996)).This
comparisonwillbeusefulindeterminingtheutilityofourmodelawayfromtheonset
ofconvectioninarotatingsystemandpermitthecalibrationofC
6
andC
7
,theremaining
freeparametersofthemodel.
ApracticalmodelofconvectivedynamicsforstellarevolutioncalculationsSeptember3,20074
idlineisthemodelpredictionforthecritical
RayleighnumberasafunctionofTaylornumberwith=10−3,=10−tedlinesarethe
asymptoticrelationsderivedfromlinearstabilityanalysisbyChandrasekhar(1961)forΩ=0andfor
Ta→∞forthedirectmodeofinstability(seeequation184onpage106).
ACKNOWLEDGMENTS
thankGordonOgilvieforhisguidancethroughoutthecompletionofthiswork.
REFERENCES
e,340,969–982(2003).
,e,JFM530,145–176(2005).
asekhar,HydrodynamicandHydromagneticStability,Oxford,1961.
,,iams,JFM322,243–273(1996).
ApracticalmodelofconvectivedynamicsforstellarevolutioncalculationsSeptember3,20075
更多推荐
rotating是什么意思ating在线翻译读音例
发布评论