言之有理是什么意思理汉语解释理的例句--六陈
2023年4月2日发(作者:夏天晒黑了怎么办)
LongkeWang
e-mail:@
e-mail:@
s
e-mail:s@
ffSchool
ofMechanicalEngineering,
GeorgiaInstituteofTechnology,
Atlanta,GA30332
AHydraulicCircuitforSingle
RodCylinders
Thispaperproposesanovelhydrauliccircuitforasinglerodcylindercontrolledbya
cuitarrangementnotonlygivesthesystemhigh
energyefficiencybutalsoimprovesuponth外国著名诗人有哪些 einternalinstabilityoftraditionalcircuits.
Stabilityis
motivations,derivations,andproofsofthesystemdynamicalstabilitiesarepresented.
Controlalgorithmsincludingstabilitycontrolandslidingtothedesiredworkingregion
mentsareconductedtoverifythecircuit,andresultsshowthatthe
circuithasgoodperformance.[DOI:10.1115/1.4004777]
1Introduction
Hydraulicsystemsarewidelyusedinindustrialapplications
becauseoftheirhighpowerdensity,flexibility,andhighstiffness.
Applicationscanbefoundinagriculture,mining,construction,
r,theefficiencyoffluidpowerisrela-
tivelylowwhencomparedwithmethodsoftransmittingpower
creasingconcernsaboutfuel
pricesandemissionregulations,theefficiencyoffluidpowerhas
becomeanimportantissue.
Valvecontrolledsystemsdominateintoday’shydraulic
ofavalvecontrolledsystemseemstobea
straight-forwardsolutionwheresystemsuseapressurecompen-
satedorload-sensingpumptosupplyindividualvalvesthatcon-
ignlookssimple,buttherearesome
disadvantages:highinstallationcost,highcomponentcosts,and
lowenergeticefficiencyduetothrottlinglosses[1].Displacement
controlledhydrostatictransmissionsusuallycanbefoundin
smallermobilemachinesandareusedaspropulsiondrives.
Energyefficiencyimprovementusuallyisevaluatedbycompar-
ingwithfuelconsumptionwhenthesameworkingroutinesare
conducted,forexample,a3-mindiggingcycleisrepeated10
majoradvantageofapumpdisplacementcontrolledactuatoris
thatitprovideshigherenergyefficiencybecausethereareno
throttlinglosseswithinthemainpowerlinesoftheactuatorsand
becausethepumpisabletoregenerateenergyfrompotentialand
brakingenergyfromotherfunctionunitsbymechanicallysharing
thepumps’ncipleofpowerregenerationissimilar
tothatusedinelectricalsystems,wherepartoftheenergythat
feedstoelectricmotorsonthesamepowergridisregenerated
tly,thereare
manyvehicles,includingexcavators,cranes,andsomerobots,
usingmultiplelinearandrotaryhydraulicactuatorssimultane-
ously;theabilitytorecoverenergywillbeanecessarypartofnew
generationhydraulicmobilemachines.
Oneimmediateproblemforpumpdisplacementcontrolledsys-
temsisthatthemostcommonactuatorsusedbytheindustryare
pleistheboomstructureusedin
ingasinglerodcylinderinapumpdisplace-
mentcontrolledcircuit,anappropriatecircuitarrangementisnec-
essaryinordertobalanceunequalflowratesenteringandleaving
thecylindervolumesbecauseofthedifferentialareasofthe
cylinder.
Severalapproachescanbefoundinliteraturetosolvethedif-
r[2]andLodewyks[3,4]intro-
ducedahydraulictransformerforunequalflowcompensations.
Thehy眩组词 draulictransformer,whichissimilartoanelectricaltrans-
former,iscapableofconvertinganinputflowatacertainpressure
leveltoadifferentoutputflowattheexpenseofachangeinpres-
ransformerratioisthesameasthearearatioofa
givencylinder,theunequalflarbutmore
innovativeproductisdevelopedbyINNAS[5],basedonthebent
ainsthreeports,wherethecontrolofthevol-
umeflowtotheindividualportsisachievedbycontrollingthe
ansformercanonlybeusedforasinglerodcyl-
inderinfourquadrantoperationstogetherwithanadditionalhigh
r[2]alsoproposedtousetwovariabledis-
placementpumps,whosedisplacementratioisadaptedtothearea
ratioofthesinglerodcylinder,tocompensatedifferentialflows.
Besidesclosedloopcircuitsolutions,Heybroek[6]proposedan
openloopcircuitsolutionbyimplementingasetofH-bridgecon-
cuitextendsthemaximumspeedatwhich
thesinglerodcylindercanbeoperated.
In1994,aconceptforclosedcircuitdisplacementcontrolwas
patentedbyHewett[7]basedonavariabledisplacementpump
andalowpressurechargelineforcompensatingthedifferencein
volumetricfl-positionthree-way
valvewasusedtoconnectthelowpressuresideofthecylinderto
cuitwassuccessfullyimplementedon
amobileforestrymachine[8].Asimilarconcept,whichusestwo
pilotoperatedcheckvalves,wasdevelopedbyRahmfeld[9]and
RahmfeldandIvantysynova[10].Fuelsavingsof15%overa
load-sensingweredemonstratedbyexperimentsusingprototype
antagesofsuchsolutionsinclude:(1)throt-
tlinglossesareeliminated;(2)thecostofthecircuitislowcom-
paredwithothersolutions;(3)energyrecoveryispossible
becausethepumpssharethesameinputshaft.
Thehydrauliccircuitneedstobeoperatedinfourquadrant
modesinordertorecoverenergyfromotherfunctionunits.A
reportedproblemforthiskindofcircuitispumposcillationunder
somecircumstances[11].Moreexplicitly,thepressuresonthe
capsideandrodsidesometimesuncontrollablyoscillate;corre-
spondingly,thecylindervelocityoscillatesandchangesrapidly
eventhoughitiscontinuousbecauseofmassinertia;thesystem
hasfastoscillationsbetweenpumpingmodeandmotoringmode.
Atthisstage,thesystemlosescontrollabilityorisunderweak
.11,anobserverisdesignedtopredictwhen
suchpressureoscillationsoccurinordertointroducecontrol
y,largeoscillationsofactua-
torpressureandvelocityareundesirableandmaybedangerous.
Thelossofcontrollabilityorweakcontrollabilityispotentially
unacceptableforindustryapplications.
Inthispaper,anovelflowcontrolcircuitfordifferentialflow
ratesispresentedandverificeptis
developedfromHewett’sstructure[7].Newcomponentsand
ContributedbytheDynamicSystemsDivisionofASMEforpublicationinthe
JOURNALOFDYNAMICSYSTEMS,riptreceived
May27,2010;finalmanuscriptreceivedMay14,2011;publishedonlineDecember
6,:LuisAlvarez.
JournalofDynamicSystems,Measurement,andControlJANUARY2012,Vol.134/011019-1
CopyrightVC2012byASME
ributionsubjecttoASMElicenseorcopyright;see/terms/Terms_
单杆液压缸
cuitinheritsadvan-
tagesofHewett’sdesign,buttheprinciple,theworkingpoint
analyses,andtechnicalfocusaretotallydifferentfromHewett’s.
Thecircuitnotonlypreservesenergyefficiencybutalsoelimi-
re,trackingperformancecan
beadjustedasdemanded.
2TheFlowControlCirc七言古诗词 uitWithDynamical
Compensations
TheproposedclosedloophydrauliccircuitisshowninFig.1.
Thecircuitconsistsofapairofcheckvalves(3a,3b),apairof
flowcontrolvalves(4a,4b),apairofreliefvalves(5a,5b),a
three-positionthree-wayshuttlevalve(6),twopressuresensors,
stheproposedcircuit,thewholesystem
includesadisplacement东坡肉的做法 controlledpump(1),achargepump(2),
andasinglerodcylinder(7).Thedifferentialvolumeandvolu-
metriclossesarebalancedthroughoneofthecheckvalvesorthe
shuttlevalvetothelowpressurepowerlinewhosepressureis
closetothechargepressuredependingonthecharacteristicsof
trollerdynami-
callyadjuststheflowcontrolvalvestoallowthecircuittobecom-
itycompensationisaccomplishedbyusinga
small,controlledleakagesuchthatthepressureoscillationsare
onalcompensationcanbeissuedbythecontroller
ief
valves,whichdonotoperateinnormalworkingsituations,pro-
videapressuresafetyprotection.
Thecircuitworksinallfourquadrantoperationsasshownin
itivedirectionisdefinedasthedirection,which
makesthecylinderextendunderpumpingmodeasshowninFig.
2(a)Thatis:thedifferentialpressureonthepumpisdefinedas:
PP
a
P
b
,pumpflow,Q,isdownwardonthepump,thecylin-
derdisplacement,x,erP;Qhave
samesign,thepumpisinpumpingmode,whichmeansthepump
istransferringenergytothecylinder;otherwise,thepumpisin
themotoringmodewhichmeansthecylinderfeedsenergybackto
0;P0,thepumpneithergivesenergynor
absorbsenergyandthemovementofthecylinderismainly
hercase,whenP%0;Q0,
thereisnolargeenergyexchangebetweenthepumpandthecyl-
inder;noticethatthecylinderismovinginthiscase,forexample,
whenitisextending,mostofenergyexchangeisbetweenthecyl-
inderandthechargepump.
Whenthecylinderisextending,themainflowinthecircuitin
Fig.1iscounterclockwise(portB!pump!portA).Inthiscir-
cumstance,(1),P>0;Q>0;_x>0,
rgyis
-
thattheextraflow(usually
referredtoascooloil)iscomingthroughthecheckvalve3b,
whichisconnectedtothechargepumpwherethepressureislow-
(2),P0;
_
x>0,therodisbeingpulledup
thiscase,thehighpressureflowpassesthroughthevariabledis-
,thepumpcouldrecoverthisenergy.
Noticethistimethatthecooloilisenteringthesystemthrough
checkvalve3a.Thearrangementofcheckvalvesinthesystem
firstistoensurethecooloilalwaysenters
secondistoreplenishtheoillostduetoleakagesandtoregulate
theminimumpressuretopreventcavitations.
Whenthecylinderisretracting,themainflowinthecircuitis
clockwiseinFig.1(portA!pump!portB).Therearetwo
(1),P<0;Q
<0;
_
x<0,thepumppushesthecyl-
hepressureatportBishigherthanthe
pressureatportA,thethree-wayshuttlevalveconnectsthepower
lineatportBtothechargepumpsuchthattheextraflow(usually
referredtoashotoil)canbereleasedtothetank=accumulator.
SinceP;Qhavethesamesign,thesystemisunderpumping
(2),P>0;Q<0;
_
x
pushingthecylinderdown;thus,thepressureatportAishigher
thanthepressureatportB,thenthethree-wayshuttlevalve
switchessothatthehotoilisreleasedthroughthethree-way
angementoftheshuttlevalveinthesystemisto
ensurethatthehotoilisalwaysreleasedfromthelowpressure
sidetoensurethecircuit’senergyrecoveringabilities.
3StationaryStabilityAnalysis
am-
icscanbedescribedas
m
€
xb
_
xA
1
P
a
A
2
P
b
mgF(1)
wheremisthemassconsistingoftheloadsandtherodofthecylinder,
bisthelinearfrictioncoefficient,A
1
istheareaofthepistonside,A
2
istheannulusareaoftherodside,gisthegravitationalacceleration.
Fig.1Hydrauliccircuitforasinglerodcylinder
Fig.2(a)Positivedirectiondefinition,(b)Fourquadrantworking
domain
Fig.3Singlerodcylindermodel
011019-2/Vol.134,JANUARY2012TransactionsoftheASME
ributionsubjecttoASMElicenseorcopyright;see/terms/Terms_
单向阀作用
换向阀6的
作用,热交
换
,
externalloadforce,coulombfriction,nonlinearfrictionetc.
Forconvenience,newvariablesaredefinedas
a
A
2
A
1
~
P
a
P
a
P
0
~
P
b
P
b
P
0
m
c
g1aA
1
P
0
Fm
€
xFmgb
_
x
(2)
whereaisthepistonarearatio,P
0
isthechargepressure(which
usuallyislow,forexample,150psi),m
c
gisthecriticalmassforce
(m
c
isreferredtoasthecriticalmassinthefollowingandgis
gravitationalacceleration),whichisequaltothenetforcepro-
videdbythecylinderwhenbothside描写七夕节的古诗有哪些 softhecylinder’spressure
equalP
0
.Thus,Eq.(1)canbewrittenas
Fm
c
gA
1
~
P
a
a
~
P
b
(3)
ThehydrauliccircuitshowninFig.1worksinallfourquadrant
operationsandcanregenerateenergyfrompotentialenergyand
frombrakingenergyappliedbyotherfunctionunits,theseobser-
vationsleadtofollowingresults:
(1)
~
P
a
;
~
P
b
arealmostnonnegative.
(2)Atleastoneof
~
P
a
,
~
P
b
isclosetozeroundernormalworking
conditions.
(3)Thesystemisunderpumpingmodeif
Fm
c
gand
_
xhave
thesamesign;otherwise,itisinmotoringmode.
(4)If
Fm
c
gisclosetozero,thecylinderismainlypowered
bythechargepump.
Result1isduetothepressureinbothportsofthecylinderbeing
heckvalveswereideal
components,theywouldpreventpressurefromfallinglowerthan
tice,thereisalwayssomeinternalflow
resistanceinthevalve,andacrackingpressureisrequiredtooper-
atethevalve,butthesekindsofpressuredropsthroughvalvesare
,itdoes
notpreventusfromasserting
~
P
a
;
~
P
b
arepositivemosttimes.
Result2comesfromensuringenergyefficiencyandenergy
erthecylinderisextendingorretracting,the
cooloilorhotoilshouldbealwaysconductedtooneofthepower
linesatthechargepressurethatisregulatedbythecheckvalves
s3and4canbelearned
frompreviousdiscussions.
Figure4isapressureplanegraphofpressuresatportAand
sults1and2,thedesiredpressureworkingregions
ofenergyefficientcircuitsshouldlieintheregionsapproximately
rtoobtainthesedesiredworkingregions,
threekindsofcircuitarrangementswillbecomparedconsistingof
(a)idealpilotoperatedcheckvalves,(b)commonpilotoperated
checkvalves,and(c)theproposedhydrauliccircuitinthispaper.
Sincethemainfocusofthissectionistocomparestationarysta-
bilityregionsandcost,withoutlossofgenerality,thecracking
pressureofvalves,whichisusuallydeterminedbystaticvalve
springs,isassumedtobezero;thevalvedynamicsareneglected.
5showsacircuit
usedforvariabledisplacementcontrolledactuatorsproposedby
Rahmfeld[9],RahmfeldandIvantysynova[10],andWilliamson
andIvantysynova[11].Apairofpilotoperatedcheckvalveshas
beenimplementedtobalancedifferentialflperated
checkvalves(alves),arecheck
,
alvesblockflowsinonedirection,likestandard
checkvalves,butcanbereleasedonceanadequatepilotpressure
flowisallowedinthereversedirection.
alvesinpopularusein
firstsuchvalve’soperationistriggeredwhen
P
1
>P
reference
,whereP
reference
usuallyisaconstantpressureinde-
pendentofthevalveitselfandP
1
isthepilotoperationpressure
pleofthistypeisvalvemodel
herkindof
alve,operationistriggeredwhenP
1
P
3
=a>P
2
,
whereP
1
isthepilotoperationpressure,P
2
isinletportpressure,
P
3
istheoutletportpressure,aisanarearatioofthevalvecore,
andapleismodel
terkindofvalvehas
ven-
ience,ndthe
nthispaper.
areshowninFig.6.
Valve(A)showninFig.5operatesinthecrosshatchedarea
IfP
a
jP
a
>P
01
g,Valve(B)showninFig.5takeseffectin
crosshatchedareaIIfP
b
jP
b
>P
01
eckvalvesare
closedintheareaIIIIIIwithconstraints
~
P
a
>0;
~
P
b
>
showninFig.6,IIIisnonempty.
Weclaim:itisimpossibleforP
01
tocollapsetoP
0
.P
0
isthe
P
01
P
0
(orP
01
%P
0
),
IIIthenwillcovermostworkingregions;thismeansthatboth
portsofthecylinderarealwaysconnectedtothechargepump.
Obviously,thecircuitlosesefficientcontrolorhasextremelyinef-
fectivecontrolinthesenseofenergyeffiacontra-
,P
01
P
0
alsoleadstosomeproblems.(1)Besidesthechargepressure,the
systemneedsanotherreferencepressure,thusthewholecostof
thecircuitwillincrease.(2)AhighboundofP
01
P
0
will
decreasethecircuit’senergyefficiency,butalowboundcannot
ensurethesystemiscontrollable.(3)RegionIIIisaninternally
equilibriumworkingpointinthisareadoomsthesystemtobe
unstablebecausetherearealwaysextraflowsintooroutofthe
cylinder,andthesteadyworkingpointcannotremainthereifthe
enthecylinderhappenstobe
Fig.4DesiredworkingregionsinthepressureplaneFig.5Thecircuitusingpilotoperatedcheckvalves
JournalofDynamicSystems,Measurement,andControlJANUARY2012,Vol.134/011019-3
ributionsubjecttoASMElicenseorcopyright;see/terms/Terms_
回路失去了有
效地控制,或
者说在节能方
面显得非常无
用
stationary,adeviationwouldexcitealimitcyclewhichwillbe
eabovediscussion,weconcludethat
isnotagoodsolutionforsinglerodcylin-
dercontrolcircuits.
.
Valve(A)showninFig.5operatesinthecrosshatchedarea
IfP
a
;P
b
jP
a
P
b
=3>P
0
(B)showninFig.5oper-
atesincrosshatchedareaIIfP
a
;P
b
jP
b
P
a
=3>P
0
checkvalvesareclosedintheareaIII
IIIwithconstraints
~
P
a
>0;
~
P
b
>ninFig.7,IIIisnonempty.
Thedrawbacksofthisarrangementarethat:(1)SinceIIIis
nonempty,therearecases,whereifthecylindermovesfastand
thefluidresistanceofthereturninglineisalsohigh,bothvalves
,thecylinderlosescontrolinthesenseof
energyefficiency.(2)InareaIII,ys-
tem’ssteadyworkingpointshappentolieinthisarea,thesystem
cannotbestable.(3)Simulationresultsshowtheareaofthis
regionisimportanttodynamicstability.
ternativetotheabovecircuits,
theworkingregionsoftheproposedcircuitinthispaperaremuch
,
thewholepressuredomainisdividedintothreeregions,fI;I0;Ng,
whereIfP
a
;P
b
jP
a
>P
b
g,I0fP
a
;P
b
jP
a
b
g,and
NfP
a
;P
b
jP
a
P
b
sly,II0;,andthetheoretical
measureoftheset,N,iszero(thickness).Situationswherebothof
,stationarysta-
bilityisnolongeranissue.
Evenconsideringcomponentimperfections,thisadvantagestill
tice,itispossiblethattheworkingpointliesnearthe
setofNwhenconsideringvalvedynamics,nonidealvalveflow
case,aslidingsurfacecanbeformed,
Sf
~
P
a
;
~
P
b
jA
1
~
P
a
a
~
P
b
s;
~
P
a
>0;
~
P
b
>sical
e
aidoftheflowvalvecontrol,whichwillbediscussedinthenext
sections,theworkingpointsslideonthesurfaceuntilitarrivesat
dingsurfacesatisfies
tanb1=,anypossibleineffective
workingpointsnolongerexist.
4DynamicStabilityAnalysis
ThesystemasshowninFig.1involvesloaddynamics,valve
dynamics,variabledisplacementpumpdynamics,andfluiddy-
npurposesofthispaperaretoanalyzewhenand
howpressureoscillationsaretriggeredbythecircuititselfand
,the
valvedynamicsareneglected,andtheinputtothecircuitis
assumedtobetheflproxi-
mationleadstoaconservativeconclusion,butthenumericalsim-
ulationsaresimplifiedbecauseerroraccumulationsareminimized
inthediscontinuoussystemdynamics.
Experimentsshowthatthesepressureoscillationsseldomoccur
llbecomeclearattheend
ofthissection,sothefollowinganalysisfocusesonthecasein
venience,thestatevaria-
blesaredefinedas
~
xx
1
;x
2
;x
3
T
_
x;P
a
;P
b
itive
plifieddynamicsare
describedinEq.(5)usingdefinitionEq.(4).
e
V
=
b
(4)
m_x
1
aAx
3
Ax
2
bx
1
mgF
e
_
x
2
FlowAx
1
Cx
2
x
2
R
on
x
3
>x
2
e_x
3
FlowaAx
1
Cx
3
x
3
R
on
x
2
>x
3
(5)
whereFlowisthefluidratesuppliedbythevariabledisplacement
pump,misthemassconsistingoftheloadandtherodofthecyl-
inder,Aistheareaofcylinderdefinedpreviously,aistheareara-
tiooftherodsidetothecapside,bisthelinearfriction
coefficient,Fisthetotalforceexcludingthoseexplicitly
expressedintheequations,Cisthefluidleakagecoefficient,and
R
on
isthefl
that,theoretically,R
on
shouldbeanonlinearmappingrelatingthe
valvecore’spositionandthedifferentialpressurethrough
.(5),afirstordermodelisusedtoapproximatethe
shuttlevalve’scharacteristics(tomakethisapproximationbetter,
wehaveselectedalargecapacityratedvalve).[cond]isa
Fig.8Workingregionsoftheshuttlevalve
011019-4/Vol.134,JANUARY2012TransactionsoftheASME
ributionsubjecttoASMElicenseorcopyright;see/terms/Terms_
本文主要的目
的是分析回路
本身的压力波
动是何时以及
如何被触发的
ratoroutputis1whencondistrue,
otherwise,bulkmodulusofthefluidused,Vis
thevolumeofthefluidchamberwhichincludestwoparts.
VV
line
V
c
t(6)
whereV
line
referstothevolumeofthefluidpipeline,V
c
trefers
tothevolumeofthecylinderchamber,,
itdependsonthepositionoftherod).Therodsidevolumeisdif-
ferentfromthecapsidevolumebecausethecylinderisasingle
oughthecylindervolumeislimited,thebulk
portedthattheeffectivebulkmodu-
lusofanaverageworkingfluidisatthelevelof200,000psi(1.38
MPa)[12],andMerritt[13]haspointedoutthat100,000psi(0.69
MPa)er-
agevolumeofbothsidesisusedtocalculateeinEq.(4)instead
ofusingtwodistinctvaluesfore
1
;e
2
inEq.(5).
Thefirstcaseconsidersequilibriumpointsontheset
Ifx
2
;x
3
jx
3
>x
2
;x
2
2<;x
3
2
tionsm;F;flow,(suchequilibriumpointsdoexist;forexample,
letmgFgotoalargenegativevalueinEq.(5)).Aroundthe
equilibriumpoint,thesystemis
_
~
x
b
m
A
m
aA
m
A
e
C1=R
on
e
0
aA
e
0
C
e
2
6
6
6
6
6
4
3
7
7
7
7
7
5
~
x(7)
where
~
xisthevector
~
xdefinedinEq.(5)withacoordinateorigin
changedtotheequilibriumpointcorrespondingtoagiveninputset.
ilibriumpointonIfx
2
;x
3
jx
3
>x
2
;
x
2
2<;x
3
2
Proof.
ThesystemdescribedbyEq.(7)ck
diagramofthesystemaroundtheequilibriumpointisshownin
Fig.9wherethetransferfunctionsare
Tf1s
1
msb
Tf2s
A
esC1=R
on
Tf3s
aA
esC
(8)
SinceTf2;Tf3arestrictlypassive,theirparallelcombinationis
asymptoticallystablebutTf1isalsostrictlypassive,thusthe
,alloftherealparts
ofthesystemeigenvaluesarelessthanzerosincethesystemis
mpletestheproofofpart(1).From(1),thedetermi-
nantofsystemmatrixisnonzero,thusthematrixisaonetoone
mapping;therefore,theequilibriumpointisunique.
(Q.E.D)
OntheotherhalfofthepressureplaneinFig.8,transferfunc-
tionscanbedefinedas
Tf1s
1
msb
Tf2s
A
esC
Tf3s
aA
esC1=R
on
(9)
Usingthesamearguments,wearriveatLemma2.
eisanequilibriumpointonanysideofthe
linefx
2
;x
3
jx
3
x
2
;x
2
2<;x
3
2
(1)exponentiallystableand(2)uniqueoneachsideoftheline.
Arethereanyequilibriumpointsonthesetfx
2
;x
3
j
x
3
x
2
;x
2
2<;x
3
2
theorigin.
sonlyoneequilibriumpointifx
2
x
3
and
theequilibriumpointisstable.
Proof.
Whenpressuresonthecylinderportsareequal,theshuttle
valveliesinthecenterposition,R
on
!1,theleakageofcylinder
Cisverysmall;thusfromEq.(5),
Ax
1
%FlowandFlow%aAx
1
)x
1
%0
Cx
3
FlowandFlowCx
2
)x
2
x
3
0
Thestabilitycanbeprovenusingthepreviouspassivitymethod.
(Q.E.D)
Sofar,wehaveexaminedthepossibleequilibriumpointsinthe
temdescribedbyEq.(5)isdrivenbythe
Flowandmgputisvelocity;P
a
;P
b
-
ever,thisdoesnotnecessarilymeanthatthemappingfrominput
ly,whenatsteadystateandwhen
x
2
x
3
jj
isverysmall,itispossiblethattherearetwoequilibrium
ursunderthe
mainreasonforthiscomesfromthefriction,whichisproportional
yspeaking,theratioofsteadyvelocitiesat
ferenceofnetforcescausedbyfric-
tionhappenstomovetheequilibriumpointfromonesidetoother
thisonlyhappenswhenequilibriumpointsarenear
rgydissipatedorregener-
atedisverysmallcomparedwiththeenergydissipatedbythe
chargepump,sothatanyequilibriumpointinwhichthesystem
willstayisacceptable.
Theseequilibriumpoints,whichareneartheorigin,aretrivial
,wewillfocusonthestabilityof
theequilibriumpointslyingfartherfromthex
2
x
3
thattheexponentialstabilityoftheequilibriumpointsoneach
sideofthelinedoesnotnecessarilyleadstothestabilityofthe
continuityoftheoperatoroperationdefinedinEq.
(5)cantriggerthesystem’slimitcycleevenwhenthesystemhas
ervationisthat,if
x
2
;x
3
donottouchinthepressureworkingplanethenthethree-
,thereisnoswitchingin
Eq.(5),andbecauseofthestabilityproveninLemma2,thepres-
themotivationofthestabil-
itystrategy.
ontroleffortsensurex
2
x
3
aftersystem
enterstheregionwheretheequilibriumpointexists,thesystemin
Eq.(5)isstable.
Proof.
Foranyinputset(Flow,mgF),thesystemhasthepropertiesFig.9Blockdiagramaroundtheequilibriumpoint
JournalofDynamicSystems,Measurement,andControlJANUARY2012,Vol.134/011019-5
ributionsubjecttoASMElicenseorcopyright;see/terms/Terms_
x
1
jj
Flow
aA
x
2
jjl
Flow
C
x
3
jj
l
Flow
C
,thestatespace,
~
x,fora
retwocasestoconsider.
Thefi-
ondiswhenthesystementersalimitcycle.
Ifthesystemdoesnotenteralimitcycle,thenthesystemmust
r,byLemma2,theequilibrium
pointisstableandunique;therefore,thesystemwillstayatthe
,theproofisdoneforthecaseofnolimit
cycle.
Nowsupposesystemhaslimitcycle,wecanfindtheupper
boundsofx
1
;x
2
;x
3
alsoknowx
2
x
3
atsometime(otherwise,thesystemisstable).
Withoutlossofgenerality,assumex
2
t
1
x
3
t
1
,x
2
t
1
>
x
3
t
1
atsometimet
1
,andthereisanequilibriumpointsatisfying
x
2
>x
3
.Becausethecontroleffortsensurex
2
x
3
bytheassump-
tion,thesystemwillgototheequilibriumpointbecauseofthesta-
bilityoftheequilibriumpointbyLemma2.
Fromanotherviewpoint,thestabilityproblemworkslikeazero
inputresponseproblemifalimitcyclehappensandwetakethe
the
worstinitialstatesareboundedbecausethelimitcycleisbounded.
Toensurex
2
x
3
whent>t
1
,x
2
x
3
shoulddecayfastenough
toitssteadystate.
Thesystem,describedbyEq.(5),isalineartimeinvariantsys-
temduringthetimeintervalofconsecutivetimeeventswhenthe
systempassesthroughthepressurelinex
2
x
3
.Withoutlossof
generality,thesystemcanbedescribedinEq.(10)inthe
fx
2
;x
3
jx
3
2
;x
2
2<;x
3
2
m
_
x
1
aAx
3
Ax
2
bx
1
e
_
x
2
Ax
1
Cx
2
e
_
x
3
aAx
1
Cx
3
x
3
R
on
(10)
where
~
xx
1
;x
2
;x
3
Tisdefinedwithreferencetotheequilibrium
isverysmall,asdiscussedintheprevioussections,
singularperturbationtheoryisapplied[14,15].C,theleakagecoef-
ficient,isverysmall,butR
on
istheflowresistance,whichis
designedtobeverysmallwhenthevalveisoperated;thusthethird
equationofEq.(10)achievessteadystateinthetwotimescales
2
;x
3
arebounded,theslowmanifoldsatisfies
x
3
aAR
on
x
1
(11)
Thereducedordersystemcanbesimplifiedto
m
_
x
1
a2A2R
on
bx
1
Ax
2
e
_
x
2
Ax
1
Cx
2
(12)
Thesimplifiedsystemcanbeviewedasafeedbackconnectionof
twosubsystemsdescribedbythefollowingtransferfunctions:
A
esC
A
msba2A2R
on
(13)
Thus,thecharacteristicequationofthesimplifiedsystemcanbe
derivedas
ms2
ba2A2R
on
mC
e
s
Cba2A2R
on
A2
e
0
(14)
SinceC;eareverysmall,thesecondtermisdominatedby
mC
=
e
in
Eq.(14),andthethirdtermisdominatedby
A2
e
.Thus,thedamping
coefficientfortheabovethesecondordersystemcanbederivedas
n
C
ffiffiffiffi
m
p
2A
ffiffi
e
p
(15)
Asmentionedabove,weareinvestigatingthezeroinputresponse
ofthesystem;on
(15)showsthatthedampingcoefficientwillincreasewiththe
leakagecoeffiansthepressurewilldecayfaster
nceptledtoadditionof
theflowcontrolvalvestothesystemasshowninFig.1tostabi-
elopeofthepressureresponse
willdecayatthespeed
e
nx
n
t
e
ba2A2R
on
mC
e
t
(16)
Figure10isasimulationofthesystemdescribedbyEq.(5)by
varyingleakagecoefficientswiththe[cond]operatordisabledin
ssures
arereferencetothechargepressureandtheequilibriumpointis
selected(bycombinationofthemassandthepumpdisplacement)
hepressureP
b
isalmostequal
tothechargepressurethusonlyrelativeP
a
figure
showsthatwhenleakageincreasestothreetimeslargerthanthe
originalleakage,thesystempressuresareboundedinonesideof
thepressureplaneandgoestosteadystate.
Theaboveanalysisfocusesonthecasewhenthecylinderis
extending,butitisalsovalidforthecasewhenthecylinderis
etractingcase,thesystemhasalargersafetymar-
reasonablebecause
oneport’spressureislowerthanthechargepumppressuredueto
theinternalflowresistanceofthecheckvalveandtheshuttlevalve,
whiletheotherport’spressureishigherthanthechargepumppres-
ore,thetwopressuresarenotequalsothereisno
switchinginthesystem’temgoestosteady
statebecauseofthestabilityoftheequilibriumpoints.
Isthecircuitstillenergyefficient?Twoflowcontrolledvalves,
shownas(4a)and(4b)inFig.1,
begintoworkonlywhenpressureoscillationscouldpossibly
ediscussionabove,onecanseethatthepressure
Fig.10Responsewithvaryingleakagecoefficient
011019-6/Vol.134,JANUARY2012TransactionsoftheASME
ributionsubjecttoASMElicenseorcopyright;see/terms/Terms_
oscillationsoccurwhenatasteadystatex
2
x
3
g,wheregis
someupperboundwhichcanbedeterminedbyexperimentsor
throughexperience,forexample,20PSI(0.14MPa).
Whentheequivalentleakagehasbeenincreased;thesystem’s
overallenergeticefficiencywillbeloweredatfi-
ever,thechangeinoveralleffi,
x
2
x
3
goccursonlywhentheforceexertedbythecylinder
isclosetothecriticalmassforceasdefinedinEq.(2).Inpractice,
theforceonthecylinderfromstructuralweight,suchasboom
structuresofanexcavator,isalreadymuchgreaterthanthecritical
re,innormalworkingsituations,thecylinderis
usedtoliftheavyloadsortopullsomeobjectrequiringlarge
,thecompensationalgorithmistriggeredonlyfora
-
ond,whenthecompensationistriggered,thedissipatedenergyis
boundedbygQ
l
,重阳席上赋白菊古诗赏析 whereQ
l
istheleakageflthistime,
theenergydissipatedbythechargepumpwhichisconstantly
workingisP
0
Q
0
,whereQ
0
isthechargepumpfl
P
0
>>g;Q
0
>>Q
l
,thustheenergydissipatedbytheleakage
compensationcanbeneglected.
5CompensationAlgorithmsfortheFlowControl
Valves
Thecompensationalgorithmsareimplementedusingtheflow
reatleasttwokindsof
compensationsinthecircuit:pressureoscillations,quotientgroup
sliding;andoneoptionalcompensationforthetrackingperform-
ance(Thedetailsoftrackingperformancecompensationscanbe
foundinWangetal.[15,16]).Sincethecircuithassymmetry,the
controleffortsforthevalve(4a)showninFig.1aretheexample
forthefollowingdiscussions;thecontrolofvalve(4b)isjusta
mirroredalgorithm,soitisomittedinthispaper.
Thecontrolsignalfortheflowcontrolvalveisdefinedas
uu
p
u
s
u
t
(17)
whereu
p
referstocontroleffortsofcompensationforpressure
oscillations,u
s
isthepartforformingquotientgroupsliding,u
t
is
theparttoimprovethetransientresponseoftrajectorytracking
problems.
u
p
isthenecessarypartbecausethepressureoscillationsinher-
entlyexistinthecircuitduetothecircuit’sdiscontinuousswitch-
ing.u
t
partofu
t
ensuresgoodtracking
performance,butitalsosacrificespartofthewholesystem’s
energyeffipplication’stransientresponseisnot
criticalorifthenaturaltransientresponsehasalreadybeensatis-
fied,hereare
alwayssomeimperfectionsonthevalve’sdynamicsanditsflow
resistance,thesystemwillattimesbeoutofthedesiredworking
regions.u
s
ensuresthattheworkingpointslidestothedesired
hispartneversacrificessystemenergyeffi-
ciency,itisrecommendedtokeepthiscompensation.
Theinputstothealgorithmarepressuresonthecylinderports.
Pressuresaredetectedbythepressuresensorswhosebandwidthis
requiredtobegreaterthan让心归零的说说 thepump’mmer-
ollow-
ing,P
a
referstothepressuredetectedonthepowerlinewhich
connectstothecylinderportofthesinglerodcylinderandP
b
is
thepowerlineconnectedtotherodsideofthecylinder.
Fig.11Hydraulicliftertestbed
Fig.12Controlstructure
Fig.13(a)Pressureresponse;(b)positionandvelocity
response
JournalofDynamicSystems,Measurement,andControlJANUARY2012,Vol.134/011019-7
ributionsubjecttoASMElicenseorcopyright;see/terms/Terms_
Alowpassfilterf
s
withtimeconstantsisdefinedintransfer
functionform
f
s
s
1
ss1
(18)
Lettheoperatorf
s
:
systemf
s
.Themeanvaluesoftwopressuresareevaluatedas
P
a
f
s1
P
a
P
b
f
s1
P
b
(19)
withatimeconstants1,forexample,s1
1
=
20p
litude
ofthepressureoscillationsduringaperiodoftransientresponseis
evaluatedas
DP
a
f
s2
P
a
P
a
jj(20)
wheres2isatimeconstant.
ThepressureoscillationsoccurwhenP
a
P
b
isclosetozero.
WewillturnonthistypeofcompensationwhenP
a
P
b
falls
belowsomebound,P
os
,thengraduallyturnitoffinordertomain-
udocodeforthepressureoscillation
compensationisasfollows:
If
P
b
P
a
jj
>2P
os
u
p
0
Elseif
P
b
P
a
jj
>P
os
u
p
gain2
P
b
P
a
jj
P
os
Else
u
p
gain
Endif
Fig.14(a)Pressureresponsewithoscillations;(b)position
andvelocityresponsewithoscillations
Fig.15Oscillationsareinhibitedbyincreasingleakage
Fig.16Experimentresponses(M50Kg)
Fig.17Experimentresponses(M561.2Kg)
011019-8/Vol.134,JANUARY2012TransactionsoftheASME
ributionsubjecttoASMElicenseorcopyright;see/terms/Terms_
wheregainisaconstantvaluecorrespondingtotheflowvalve’s
percentageopening.
AtleastoneofeitherP
a
orP
b
shouldbeclosetothecharge
pressurewhenthecircuitisinthedesirableworkingcondition.
Abnormalsituationsoccurwhentheshuttlevalveisnotfully
flow
controlvalve,inthiscase,willbefullyopenedtoletthesystem
fi,thecompensa-
tionisdescribedby
If(
P
b
>P
error
)
u
s
FullOpen
Else
u
s
0
Endif
whereP
error
isaboundofmaximalpressuredropontheshuttle
Openisacontrolvoltage
tofullyopentheflowcontrolvalve.
Pressuresurg杜牧清明创作背景 esduringtrackingperiodsindicatethattheaccel-
erationofthecylinderisnotsmooth(Noticethatthepressureon
othersideofthecylinderisalmostaconstantvalue).Thecompen-
sationisproportionaltothepressureoscillation’,
thecompensationisdescribedas
u
t
jD
P
a
wherejisaconstant.
Themaincomputationloadfortheentirealgorithmisdecided
byfourfirst-orderequations(thesecanbemergedintothreeequa-
tions).Sincethefilterbandwidthisverylow,say,lessthan5Hz,
mostcommercialDigitalSignalProcessorsorMicroprocessors
cancompletethisalgorithm.
6SimulationsandExperiments
Experimentsandsimulationswereconductedtovalidatethe
ed,whichisillustratedschematicallyin
Fig.1,glerodcylinderhasa
meteroftherodandthepistonare
0.0254mand0.038m,nnelironplatform
eceofthe
venoftheseweightscanbe
alvesusedinthecircuitarecho-
senfromSunHydraulicsCorporation’iable
displacementpumpisaSauerDanfossH1axialpistonpump.
pis
c-
tricmotoralsodrivesasmallchargepumptoprovidethecharge
pressure,whichisregulatedbyareliefvalveat150psi(1MPa).
Thehosesusedinthecircuitcansustainover3000psi(20.6
MPa).Thereliefvalvesareadjustedto1500psi(10.3MPa)for
ssuresensors,madebyHydacTechnologyCorpo-
ration,areratedto3000psi(20.6MPa)andareinstalledasshown
orithmsarerunontheMATLABxPCTargetreal
mandsforpumpdisplacements
andtheelectricmotorcontrolsuseaCANBUSnetworktoconnect
thetargetcomputer,thevariabledisplacementpump,andthe
nalInstrumentsPCI-6052
A=D&D=Acardisusedtocollectpressuresignalsanddrivethe
fllowpassfiltersisalsousedtofilter
theinterferencenoisefromtheelectricalmotorandactasanti-ali-
asingfiplacementsensor,madebyMTSSystemsCor-
poration,isusedtomeasurethecylinder’sposition.
Thealgorithmspresentedintheprevioussectionareimple-
epropor-
tionalcontrolisdesignedtobetheoutercontrollooptotrack
loopdesignstructureis
duetothecylinderlengthlimitationsandnonlinearfrictionchar-
acteristicsduringcylinderretractingandextending;however,the
-
resentsthecom-
resentstheexperimentalresults
withoutimplementingthispaper’
Cshowstheexperimentalresultswiththecompensations
implemented.
6.1PartA:strateandsolvepressureos-
cillationproblems,-
rametersusedbythecodeapproximatedthoseusedinthe
13showsasetofsimulationresults
whentheoscillationshavenotoccurred.
Fig.18Experimentresponses(M5142.8Kg)
Table1Experimentalresultswithoutcompensations
Mass(Kg)PressureoscillationEnergyefficiency
0NoGood
20.4NoGood
40.8YesNotacceptable
61.2YesNotacceptable
81.6YesNotacceptable
102YesNotacceptable
122.4NoGood
142.8NoGood
Fig.19SimulationresultwithM560.2Kg
JournalofDynamicSystems,Measurement,andControlJANUARY2012,Vol.134/011019-9
ributionsubjecttoASMElicenseorcopyright;see/terms/Terms_
InFig.13,duringtimeinterval,0
that,thepumpchangesthesignofthedisplacementsothatthe
13(a)showspressureschangeswith
respondingpositionandvelocityinforma-
tionareshowninFig.13(b)
samesetofparametershavebeenusedasinthesimulationinFig.
13exceptthemassischangedtobeclosetothecriticalmassas
definedintheprevioussections(Eq.(2)).Almostnooscillation
occursduringextending,butoscillationsdooccurwhilethecylin-
tinuitiesandalimitcyclecanbeeasily
identifiedinthisfigure.
UsingthesameparametersasinFig.14,theequivalentleakage
coeffiultis
thatpressureisstabilizedafterthetwo
,itcanbeseenthattheproposed
algorithmissomewhatconservativebecausethezeroinput
responseproblemdoesnotalwaysencountertheworstcase.
6.2PartB:一年级必背20首古诗 ExperimentalResultsWithout
experimentswereconductedwiththe
compensationdeactivatedinordertoverifytheinternalstabilities
ollowingtests,themassis
referredtoastheweightsmountedonthechannelironplatform.
Thetotalmassistheaddedweightsplusthemassoftheplatform,
erimentsstartatzeroadded
tof20.4Kgisaddedforeachsuccessiveexperi-
s16–18
showtheresultsforthreeoftheseexperiments.
Intheaboveresults,thecircuitisshowntoworkwellwhenthe
loadisfarfromthecriticalmassasshowninFigs.16and18.
Whentheloadisnearthecriticalmass(M68Kg),neithercyl-
inderportisconsistentlyconnectedtothechargepressure,and
thereareseriouspressureoscillationsinthecircuitasshownin
sultsfordifferentloadscanbeseeninTable1.
Theresultsshowthatthecircuitisinheritablystablewhenthe
-
ise,
theperformanceisnotacceptableeitherfromanenergyefficiency
vieworsystemsafetyviewbecausethetestbedmakesnoiseand
vibrationswhenthisoccurs.
Aseriesofsimulationsatdifferentloadsalsohasbeencon-
ductedtocomparethesimulationresultswithexperimental
ationexampleisshowninFig.19usinganadded
rrespondstotheexperimentalresult
timeinterval,0
isextending;afterthatthecylinderisretracting.
Simulationresultsatdifferentloadsareconsistentwiththeex-
perimentalresultsatthecorrespondingloadsanddisplacement.
Theresultsmatchwellwhenpressureoscillationsdonotoccur.
Thesimulatedpressurevalueisalittlelowerthantheexperimen-
fferencemaybedueto
turbulentflow,whichisnotconsideredinthesimulation,orthe
Fig.21Experimentresponseswithcompensations(M561.2
Kg)
Fig.22Experimentresponseswithcompensations(M5142.8
Kg)
Fig.23Experimentresponseswithcompensations(critical
mass)
Fig.20Experimentresponseswithcompensations(M50Kg)
011019-10/Vol.134,JANUARY2012TransactionsoftheASME
ributionsubjecttoASMElicenseorcopyright;see/terms/Terms_
r,thepredictionofpressureoscil-
lationsbysimulationsisveryaccurate.
6.3PartC:ExperimentalResultsWith
hesameparametersasinpartB,the
wholesetofexperimentswasrepeatedwithcompensationsturned
s20–22showtheexperimentalresultswhentheadded
weightsare0,61.2,and142.8Kg,respectively.
Figure20showsthecylinderisworkinginpumpingmode
normalbecausetheload
issosmallthatthepumponlyneedstoovercomesomefrictionto
eseenthatoneofportsisconsistentlyconnectedto
.22,alargeloadisaddedtothecylin-
der,sothepumpisunderpumpingmodewhentheloadislifted
upandisundermotoringmodewhenthecylinderisretracting
inderportontherod
sideisalwaysconnectedtothechargepressure.
Thingsbecomecriticalwhentheloadisclosetothecritical
mass;thepumpworksinpumpingmodeinboth为有暗香来是哪首诗 directionsas
ssuredifferencewhenthecylinderis
retractingissmall(around10psi(69KPa)).Noticethatoscilla-
tiondoesnotoccurasseeninthesimulationsandtheexperiments
situationwillhappen
ifweaddasmallamountofweightonthecylindertoapproach
ecylinderis
retracting,pressuresonbothcylinderportsareexactlyidentical;
however,lsetofresultsis
listedinTable2.
Theresultsalsoshowthereareno“undesirableworking
region”heportsisalwaysreliablyconnected
ustnessofthecircuitalsohasbeen
testedbyvaryingtrajectoryprofiles,forceimpulseonthecylinder,
ases,thecircuitworks
well.
7Conclusion
Thispaperpresentsanovelflowcontrolcircuitwhichissuita-
bleforsinglerodcylindersinvariablecontrolleddisplacement
temmodelhasbeenderivedand
sationalgorithms
havebeendevelopedtostabilizethesystemandtoimprovethe
cuitisenergeticallyefficientand
reoscillationshavebeeneffec-
ngperformancecanbeimprovedif
cuitinheritsadvantagesoftraditionaldesignsbut
cuitisvalidatedbyhardware
experimentsandshowsgoodrobustness.
Acknowledgment
ThisworkissupportedinpartbyCenterforCompactandEffi-
cientFluidPower,aNationalScienceFoundationEngineering
ResearchCenterfundedundercooperativeagreementnumber
hors
gratefullyacknowledgethesupport.
References
[1]Grabbel,ntysynova,M.,2005,“AnInvestigationofSwashPlateCon-
trolConceptsforDisplacementControlledActuators,”ower,6(2),
pp.19–36.
[2]Berbuer,J.,1988,“NeuartigeServoantriebemitprimarerVerdrangersteuerung,”
Dissertation,RWTHAachen,Germany.
[3]Lodewyks,J.,1993,“Differentialzylinderimgeschlossenenhydrostatischen
Getriebe,”OlhydraulikundPneumatik,37(5),pp.394–401.
[4]Lodewyks,J.,1994,“DerDifferentialzylinderimgeschlossenenhydrostati-
schenKreislauf,”Dissertation,RWTHAachen,Germany.
[5]Achten,P.,Fu,Z.,andVael,G.,1997,“TransformingFutureHydraulics—A
NewDesignofaHydraulicTransfer,”The5thScandinavianInternationalCon-
ferenceonFluidPower,SICFP’97.
[6]Heybroek,K.,Larsson,J.,andPalmberg,J.O.,2006,“OpenCircuitSolution
forPumpControlledActuators,”Proceedingsof4thFPNIPhDSymposium,
Sarasota,FL,pp.27–40.
[7]HewettAllan,J.,1994,“HydraulicCircuitFlowControl,”No.
5,329,19.
[8]Lawrence,P.D.,Salcudean,S.E.,Sepehri,N.,Chan,D.,Bachmann,S.,Parker,
N.,Zhu,M.,andFrenette,R.,1995,“CoordinatedandForce-FeedbackControl
ofHydraulicExcavators,”4thInternationalSymposiumonExperimental
Robotics,ISER’95,Stanford,CA.
[9]Rahmfeld,R.,2002,“DevelopmentandControlofEnergySavingHydraulic
ServoDrivesforMobileSystems,”,VDIFortschritt-Berichte.
sseldorf:VDI.
[10]Rahmfeld,ntysynova,M.,2003,“EnergySavingHydraulicDisplace-
mentControlledLinearActuatorsinIndustryApplicationsandMobileMachine
Systems,”TheFourthInternationalSymposiumonLinearDrivesforIndustry
Applications(LDIA03),Birmingham,UK.
[11]Williamson,ntysynova,M.,2008,“PumpModePredictionforFour-
quadrantVelocityControlofValvelessHydraulicActuators,”Proceedingsof
the7thJFPSInternationalSymposiumonFluidPower,Toyama,Vol.2,pp.
323–328.
[12]Yu,J.,Chen,Z.,andLu,Y.,1994,“TheVariationofOilEffectiveBulkModu-
lusWithPressureinHydraulicSystems,”TransactionsoftheASME,Journalof
DynamicSystems,MeasurementandControl,Vol.116(1),pp.146–150.
[13]Merritt,H.E.,HydraulicControlSystems(Wiley,NewYork,1967).
[14]Kokotovic,V,Khalil,H.,andReilly,J.O.,SingularPerturbationMethodsin
Control:AnalysisandDesign(Academic,NewYork,1986).
[15]Wang,L.,Book,W.,andHuggins,J.,“ApplicationSingularPerturbation
TheorytoHydraulicPumpSystems,”IEEE=ron.(in
press).
[16]Wang,L.,Book,W.,andHuggins,J.,2010,“AFlowControlCircuitWithDy-
namicalCompensations,”InventionDisclosureformNo.5182ofGeorgiaInsti-
tuteofTechnology.
Table2Experimentalresultswithcompensations
Mass(Kg)PressureoscillationEnergyefficiency
0NoGood
20.4NoGood
40.8NoGood
61.2NoGood
68.2NoGood
81.6NoGood
102NoGood
122.4NoGood
142.8NoGood
JournalofDynamicSystems,Measurement,andControlJANUARY2012,Vol.134/011019-11
ributionsubjecttoASMElicenseorcopyright;see/terms/Terms_
更多推荐
cylinders是什么意思inders在线翻译读音
发布评论