负反馈的英文翻译英语怎么说-上海春考成绩查询
2023年4月1日发(作者:周雅倩)
UnimolecularRateConstantandThresholdEnergyfortheHFEliminationfrom
ChemicallyActivatedCF
3
CHFCF
3
,,BrookeSibilaStiles,*
DepartmentofChemistry,UniVersityofNorthCarolinaatAsheVille,OneUniVersityHeights,
AsheVille,NorthCarolina28804-8511
ReceiVed:January8,2010;ReVisedManuscriptReceiVed:May18,2010
CombinationofCF
3
CHFandCF
3
radicalsatroomtemperaturegeneratedchemicallyactivatedCF
3
CHFCF
3
moleculeswith95(3kcal/molofinternalenergythatdecomposebylossofHF,initiallyattachedtoadjacent
carbons,withanexperimentalunimolecularrateconstantof(4.5(1.1)yfunctionaltheory
wasusedtomodeltheunimolecularrateconstantforHFelimination,k
HF
,todetermineathresholdenergyof
75(2kcal/mol.
uction
ThereactionsofCF
3
CHFCF
3
inthegasphaseareofgreat
interestbecauseCF
3
CHFCF
3
isusedasafiresuppressantin
placeofHalon1301,CF
3
Br;1–6asaworkingfluidinrefrigeration
andairconditioningapplications;7–9asafoamblowingagent
withfireretardantcapabilities;10andasapropellantinmedical
sprays.11–13Modelingstudiesoflow-pressureandatmospheric
pressurecombustionrelyuponaccuratekineticdataforthe
unimoleculardecompositionofCF
3
CHFCF
3
anditsbimolecular
-
mentalandcomputationalstudies14–26oftheproductprofilefor
combustionofCF
3
CHFCF
3
andofthereactionsbetween
CF
3
CHFCF
3
andOHradicalsoratomicspecies(F,Cl,H,O,
etc)haveappeared.
Ashocktubepyrolysis26ofCF
3
CHFCF
3
overthetemperature
range1200-1500Kconcludedthatthermaldecomposition
dominatedtheremovalprocessesofCF
3
CHFCF
3
andthatHF
eliminationpredominatesoverC-Cbondfideled
thecombustionprofileusinganassumedArrheniusactivation
energy,E
a
,for1,2-HFlossof69.6kcal/
a
was
estimatedbyadding38.8kcal/moltotheenthalpychangefor
theHFeliminationreactionandcorrespondstoathreshold
energy,E
0
(HF),of67.4kcal/mol;theA-factorwasassumedto
be7.9ingstudy1usinglaser-induced
fluorescencedetectionofradicalspeciesintheCF
3
CHFCF
3
inhibitedCH
4
+O
2
flameagreedthatunimolecularHF
decompositionwasdominant,butconcludedthatC-Cbond
rupturewasincreasinglyimportantastheflametemperature
increased,anditappearedthatthesameArrheniusparameters
ecentthermal
decompositioninvestigation19busingUVphotoelectrondetection
alsofoundthat1,2-HFeliminationwasfavoredbutsuggested
thatformationofHCF
3
+CF
2dCF2
,ratherthanC-Cbond
rupture,becamemoreimportantathighertemperatures.A
modelingstudyoftheproductprofilefromthereactionbetween
CF
3
CHFCF
3
andeitheratomichydrogenorO(3P)usedE
a
)
69.5kcal/mol23forHFelimination,butasimilarapproach27
fortheinhibitionbyCF
3
CHFCF
3
onshockheatedethane-
oxygen-argonmixturesusedE
a
)75.6kcal/mol.
AtheoreticalinvestigationattheQCISD(T)levelrecom-
mended28E
0
)79.2kcal/mol,butfivedifferentlevelsoftheory
predictedanE
0
intherange82.3-89.1kcal/molandB3LYP
with6-31G(d)gaveabarrierof75.4kcal/
0
is
typicallytwoorthreekcal/mollowerthanE
a
athightemper-
ature;thus,thetheoreticalworksuggestedanactivationenergy
between75and90kcal/flameprofilemodeling
studies1,26agreedthatunimoleculareliminationofHFfrom
CF
3
CHFCF
3
isanimportantstepinthecomplexreaction
chemistryofinhibitedflamesand,becauseaprecisethreshold
energyisessentialtoaccuratelymodelthecombustionsystem,
anexperimentalinvestigationofthe1,2-HFeliminationreaction
fromCF
3
CHFCF
3
seemswarranted.
WewillmeasuretheunimolecularrateconstantforHFloss
fromCF
3
CHFCF
3
chemicallyactivatedbythecombinationof
CF
3
andCHFCF
3
rageenergy,〈E〉,ofthe
chemicallyactivatedCF
3
CHFCF
3
isestimatedas95kcal/mol
fromtheCF
3
CHF-CF
3
bonddissociationenergy,D
0
(CF
3
CHF-
CF
3
),plustheaveragethermalenergyofthecombiningradicals.
TheRRKMtheory29willbeusedtocalculatetherateconstant
forHFeliminationfromCF
3
CHFCF
3
,withanenergyequalto
〈E〉,andthethresholdenergy,E0
,willbevarieduntilthe
computedunimolecularrateconstantmatchestheexperimental
arametersneededfortheRRKMcomputationof
therateconstant(vibrationalfrequenciesandmomentsofinertia)
willbecalculatedwithdensityfunctionaltheory(DFT)using
maticstudy31ofDFT
andabinitiomethodsforthe1,2-HF(DF)eliminationfrom
CF
3
CH
3
(CF
3
CD
3
)determinedthatB3LYPorB3PW91together
witheithera6-31G(d′,p′)oracc-PVDZbasissetgavethebest
agreementbetweencomputedandexperimentalrateconstants
ecentwork,32–34DFTusing
theB3PW91methodwitha6-31G(d′,p′)ora6-311+G(2d,p)
basissetwasfoundtogivecloseagreementbetweenthe
computedandexperimentalassignedE
0
(HF)forninehalopro-
panesandonehalobutane.
Therearethreemainsourcesofuncertaintyinmatchingthe
computedrateconstanttotheexperimentalmeasurementto
determinetheE
0
forHFelimination:(1)Theenthalpyof
formationforCF
3
CHFCF
3
,theCF
3
CHFradical,andtheCF
3
radicalareusedtodetermineD
0
(CF
3
CHF-CF
3
).Theexperi-
mentaluncertaintyinthermochemistryforthesefluorocarbon
speciesisoften(1-2kcal/molleadingtoanuncertaintyof
*Towhomcorrespondenceshouldbeaddressed.E-mail:bholmes@
.
.A2010,114,6996–70026996
10.1021/jp100195e2010AmericanChemicalSociety
PublishedonWeb06/10/2010
(2-4kcal/molforthe〈E〉.Thisuncertaintywillberepresented
asthehorizontaledgesofaboxinFigure2.(2)Thereissome
errorinmeasuringtheexperimentalrateconstant,butthisis
frequentlylessthantheuncertaintyassociatedwiththecolli-
certaintywillberepre-
sentedbytheheightofaboxinFigure2.(3)Theelectronic
structurecalculationsgivevibrationalfrequenciesandmoments
ofinertiaforthemoleculeandthetransitionstatethatareneeded
toevaluatetherateconstant,k
E
,ataspecificenergyEaccording
ion3.3wewilldemonstrate
thatdifferentDFTmethodsandbasissets,foracommonE
0
,
givenearlyidenticaldependenceofk
E
r,the
twoCF
3
torsionalfrequenciescanbetreatedasavibration,
sanddensities
ofstatescanbesensitivetothespecificmodelusedtodescribe
thetorsionalmotion,andwewilltestdifferentmodelsforthe
CF
3
torsionalmotionfortheeffectonk
E
.Thebestcalculated
rateconstantsaresubjecttotheassumptioninherentintransition
E
curvein
Figure2thattouchestheboxillustratingtheuncertaintyin〈E〉
andintheexperimentalrateconstantwillbecriteriaforan
acceptableE
0
.Agreementbetweenthecomputedandthe
experimentalrateconstantsshouldreducethewidevariation
inthecurrentlypublishedE
0
value(67-89kcal/mol)23,26–28to
(2kcal/mol.
ThechemicallyactivatedCF
3
CHFCF
3
,denotedwithan
asterisk(*),wasformedbythecombinationofCF
3
CHFand
CF
3
radicals,eq1andtheotherradicalcombinationreactions
are2and3.
PhotolysisofCF
3
CHFIandCF
3
Iinpyrexvesselscontaining
smallamountsofmercury(I)iodide(toscavengeatomic
iodine)on5
showsthatchemicallyactivatedCF
3
CHFCF
3
*maybestabilized
bycollisionwithbathgasmolecules,M,mainlytheiodide
precursors,oratsufficientlylowpressuresitmaydecompose
via1,2-HFelimination,afluoroethane,reaction3,
andmeso-andd,l-CF
3
CHFCHFCF
3
,reaction2,arestabilized
atthepressuresoftheseexperiments.
Therateratioforeqs4and5equalstheproductratiosowe
canwriteeq6.
whichisoftheformy)mx+b(y)[CF
2dCFCF3
]/[CF
3
-
CHFCF
3
],m)k
1,2-HF
/k
M
,x)1/[M],andb)0).The
concentrationofthecollisionpartner,[M],equalsthepressure,
P;thus,aplotof[CF
2dCFCF3
]/[CF
3
CHFCF
3
]versus1/Pwould
belinearwithaslopeofk
1,2-HF
/k
M
andaninterceptofzero.
mentalSection
Pyrexvesselswithvolumesrangingfrom552to4900mL
containingnormally0.182molof1-iodo-1,2,2,2-tetrafluoro-
ethaneand0.547moltrifluoromethyliodide,andsmall
amountsofmercury(I)iodide,werephotolyzedwithahigh-
pressureOriel68811arclampoperatingwitha500Wmercury
ctionvesselwasplacedatleast25cmfromthe
presenceofmercury(I)iodideinthevesselsduringphotolysis
aidsinformationofthetrifluoromethyland1,2,2,2-tetrafluo-
roethylradicals.35Photolysistimeswerebetween10and20min,
atroomtemperature,resultingintheconversionof12-22%
plepreparation,apressureofeither
1.00or3.00Torrofaniodidewasmeasuredinasmall,
calibratedvesselwithaMKS270electronicmanometerand
al
pressureinthereactionvesselwasdeterminedbyadding
togethertheresidualpressurepriortoadditionoftheiodides,
typicallybetween(2and4)10-4Torr,andthepressuredue
totheiodidesthathadbeentransferredfromthecalibrated
ingadditionoftheCF
3
CHFIandCF
3
Isamples
tothereactionvesselthetotalpressurewasbetween(0.22and
3.0)10-2Torr.
Productidentificationwasbasedoncomparisonofmass
spectralfragmentationpatternsandretentiontimeswithau-
dzuQP5000GC/MSwitha0.25mm
by105mRtx-200columnwasusedformassanalysis,aGC/
icaldatawere
collectedusinga0.53mmby210mRtx-200combination
columninaShimadzuGC-14Awithflameionizationdetector
andaShimadzuCR501ChromatopacIntegratorforintegration
sothermalGCanalysisat35Cthetypical
retentiontimeswereasfollows:C
2
F
6
,19.4min;CF
2dCFCF3
,
20.4min.;CF
3
CHFCF
3
,21.2min.;CF
3
I,22.1min,meso-and
d,l-CF
3
CHFCHFCF
3
,26minand29min.;andCF
3
CHFI,33
cdatawerecollectedusinga210mGCcolumnto
ensurebaselineseparationofC
2
F
6
,CF
2dCFCF3
,CF
3
CHFCF
3
,
andCF
3
ticsamplesofallproductswereavailable
exceptCF
3
CHFCHFCF
3
.Theflameionizationdetectorcalibra-
tionfactorwas[CF
2dCFCF3
]/[CF
3
CHFCF
3
])0.685(0.007
basedonfourreplicatesfromfivedifferentmixturesofauthentic
samples.
sandDiscussions
mentalChemicalActivationRateConstant.
ThischemicalactivationstudyusingCF
3
CHFIandCF
3
Ito
producetheCF
3
CHFandCF
3
radicalsisacleanchemical
activationsystemwithnoevidenceforsecondaryunimolecular
reactionsandnoevidencefordisproportionationreactionsof
alGC/MStraceofaphotolyzedsample
usedtoidentifyproducts,whichispresentedinSupporting
Information,showsonlyproductsfromeq1-5wereobserved.
Aplotof[CF
2dCFCF3
]/[CF
3
CHFCF
3
]versusinversepres-
sure,seeeq6,ssure
rangeissmallerthandesirable,butwewantedthepressurein
thereactionvesselstobeanorderofmagnitudelargerthanthe
residualpressure;thus,ourvacuumsystemrestrictionedthelow
pressurelimitto210-3Torrwhichis1/P)
CF
3
CHF+CF
3
98
k
cCF
3
CHFCF
3
*(1)
2CF
3
CHF98
k
cmeso-andd,l-CF
3
CHFCHFCF
3
*(2)
2CF
3
98
k
cCF
3
CF
3
*(3)
CF
3
CHFCF
3
*98
k
1,2-HFCF
2
dCFCF
3
+HF(4)
98
k
M
[M]
CF
3
CHFCF
3
(5)
[CF
2
dCFCF
3
]/[CF
3
CHFCF
3
])k
1,2-HF
/k
M
[M](6)
HFEliminationfromChemicallyActivatedCF
3
CHFCF
3
.A,Vol.114,No.26,20106997
anticipatedforaunimolecularreactioninanefficientbathgas,
theplotislinearandtheintercept,-(2.9(4.8)10-4,is
zerowithintheexperimentaluncertainty((1standarddevia-
tion).Theslopeis(3.4(0.2)10-5Torrandequalsk
1,2-HF
/
k
M
.TheuseofthestrongcollisionmodelisdefendedinSection
econstantinpressureunitsisconvertedtouni冬天图片 tsof
s-1bymultiplicationbythecollisionrateconstantk
M
)
d2
A,M
(8kT/
A,M
)1/2Ω2,2(T*).Usingcollisiontheorywithcol-
lisiondiameters,d,and/kvalues(inparentheses)of5.1
(288K),5.2(300K),and6.1(200K)forCF
3
I,CF
3
CFHI,
andCF
3
CHFCF
3
,respectively,k
M
)1.32107(torr-s)-
slopeisconvertedtoarateconstantforHFeliminationfrom
CF
3
CHFCF
3
,k
1,2-HF
)(4.5(1.1)lision
diametersandthe/kvaluesusedforCF
3
CHFIandCF
3
CHFCF
3
areestimatesbasedonvaluesemployedfortheCF
3
CHFCH
3
system.32The6%uncertaintyintheslopeoftheplotFigure1
wasincreasedto(25%toaccountfortheuncertaintyin
convertingtherateconstantfrompressureunitstos-1units.
ationofnonequilibriumrate
constantsforcomparisonwiththeexperimentalchemical
activationresultsrequirestheaverageenergy,〈E〉,depositedin
theCF
3
CHFCF
3
nenergyofthechemically
activatedCF
3
CHFCF
3
isgivenbyeq7,whereD
0
(CF
3
CHF-
CF
3
)isthebonddissociationenergyfortheC-Cbondformed
byradicalcombination,anditequals-∆H
rxn,0
meanvibrationalenergyoftheradicalsisdeterminedfromtheir
vibrationalfrequencies〈E
vib
(CF
3
)〉)0.4kcal/moland〈E
vib
-
(CHFCF
3
)〉)1.7kcal/mol,and3RTistherotationalenergyof
theradicals.
The∆H
f,0(CF3
))-111.7kcal/molisestablished.36Weadopt
∆H
f,298(CF3
CHF))-166.7kcal/mol,whichisanaverageof
fourrecentvalues(-168,37-167.4,38-166.7,39and-164.5
kcal/mol26)andcorrectionto0Kgives∆H
f,0(CF3
CHF))-165
kcal/ports(-371.1,40-374.2,41-374.5,38-370.6,2
and-365.626b)for∆H
f,298(CF3
CHFCF
3
)wereaveragedtogive
-371.2kcal/molandcorrectedto0Ktogive∆H
f,0(CF3
-
CHFCF
3
))-368.0kcal/∆H
rxn,0forreaction1is
-91.3kcal/molwithacombineduncertaintyof(3kcal/mol.
PetersonandFrancisco28calculatedD
0
(CF
3
CHF-CF
3
))92.3,
ingoodagreementwithour91.3(3kcal/ingthese
valuesintoeq7gives95.2(3kcal/mol,andwewilluse〈E〉
)95(3kcal/rnativemethodtocompute〈E〉will
begiveninSection3.4.
vibrationalfrequenciesandmomentsofinertiaforthemolecule
andthetransitionstate,usedinthestatisticalrateconstant
calculations,weredeterminedbyDFTusingGaussian03,30see
CF
3
torsionalmotionsweretreatedaseither
torsionvibrations(TOR),hindered-internalrotors(HIR)oras
freerotorsforcalculations42oftheharmonicdensityorsumof
ctionpathdegenercieswere4forthe
’smethod
wasusedtocalculatethereducedmomentsofinertia,shown
inTable1,fortheCF
3
groupforthemoleculeandforthe
transitionstatestructure;thetorsionalpotentialenergybarrier
forrotationofaCF
3
group,V(CF
3
),wascalculated,using
B3PW91orB3LYPwiththefivebasissetslistedinTable2,
tobe3kcal/molfortheCF
3
CHFCF
3
,independentofmethod
andbasisset,anditwasassumedtheV(CF
3
)didnotchangein
〈E〉)100kcal/molwithanE
0
(HF))
74kcal/mol,theHIRrateconstantwasjust6.8%lowerthan
therateconstantcalculatedusingafree-rotormodel;thus,Figure
2willonlyshowtheenergydependenceofrateconstants
calculatedusingtheHIRorTORmodels.
TwoDFTmethods(B3PW91andB3LYP)andthefivebasis
setsshowninTable2wereusedtoillustratethatthecalculate
E
0
(HF)candecreasebymorethan6kcal/molfromthesmallest
r,thetwoDFTmethodsgive
explorewhetherrateconstantscomputedusingdifferentmethods
orbasissetsexhibiteddifferentmagnitudeandenergydepen-
dencetheB3LYP/6-31G(d),B3PW91/6-31G(d′,p′),andB3PW91/
6-311+G(2d,p)DFTmethodswereusedtocomputek
E
versus
E,methodwasusedforallcalculations.
TherateconstantsatE
0
(HF))74kcal/molwithB3LYP/6-
31G(d)wereindistinguishablefromtherateconstantscalculated
usingfrequencyandmomentsofinertiadatacomputedusing
B3PW91/6-31G(d′,p′),eresultwasfound
atE
0
(HF))76kcal/molwhenrateconstantswerecompared
fortheB3PW91/6-31G(d′,p′),andB3PW91/6-311+G(2d,p)
oughtheE
0
(HF)valuesvariedsignificantly
fordifferentDFTmethods,thecomputedrateconstantsfora
,wecan
computek
E
atspecificenergies,E,usingjustoneDFTmethod
withconfidencethatotherbasissetswouldgivesimilarresults.
TheremainingcalculationswilluseB3PW91/6-31G(d′,p′),
whichhasbeenverysuccessfulinourpreviouswork.32–34
Bycontrast,useofTORversusHIRmodelsgavecalculated
rateconstantsdifferingbyaboutafactorof2,dependingon
thespecific〈E〉,CF
3
torsionalmotions
appeartobestronglycoupledbecausethefrequenciesare
significantlydifferent:oneinthe10-25cm-1rangeandthe
othernear85cm-1,,theHIRmodelis
preferredandjusttheHIRmodelbasedonB3PW91/6-
31G(d′,p′)nstantcalculationswere
doneforarangeofE
0
(HF)valuesfortheHIRmodelto
determinewhichthresholdenergiesproducedcomputedrate
constantsthatencompassedtheuncertaintiesinboththe
experimentalrateconstantandthe〈E〉shownastheboxin
ioof[CF
2dCFCF3
]/[CF
3
CHFCF
3
]vsreciprocal
pressureforthe1,2-eliminationofHFfromchemicallyactivated
CF
3
CHFCF
3
,peis(3.4(0.2)10-5
Torr,theinterceptis-(2.9(4.8)10-4,andthecorrelationcoefficient
is0.96.
〈E〉
)D
0
(CF
3
CHF-CF
3
)+3RT+〈E
vib
(CF
3
)〉+
〈E
vib
(CHFCF
3
)〉(7)
.A,Vol.114,No.26,2010Duncanetal.
〈E〉)95kcal/mol,thek
〈E〉
)170s-1foranE
0
)
76kcal/molandk
〈E〉
)660s-1foranE
0
)74kcal/
heHIR
modelanE
0
(HF)from73to77kcal/molwouldjusttouchthe
box,seeFigure2;thus,weareconfidentinassigningE
0
(HF)
)75(2kcal/mol.
ingtheSpecificRateConstant,k
〈E〉
,atan
AverageEnergy〈E〉totheAverageRateConstant,〈k
E〉.The
previoussectionusedthespecificrateconstant,k
〈E〉
at〈E〉to
determineacceptablevaluesforthethresholdenergyforthe
anapproximationbecausethe
radicalcombinationreaction,eq1,producesCF
3
CHFCF
3
with
adistributionofenergies,f(E),andtheaveragerateconstant,
〈kE〉canbecalculatedoncef(E)helarge
uncertaintyin〈E〉,itisnotreasonabletoattemptafurther
refinementofE
0
,butitwouldbeofinteresttoknowhowk
〈E〉
comparesto〈k
E〉.Thef(E)canbecalculated29onceamodelfor
ociation
complexconsistsofthevibrationalfrequenciesforthetwo
radicals,fourbendingfrequencies(twoat50cm-1andtwoat
100cm-1),sionalmotionabout思念却不能相见的句子
theC-CbondfortheCF
3
CHFradicalwastreatedasafree
culatedenergydistributionfunctionisshownin
hef(E)andthek
E
values
forHIRatE
0
)74kcal/molthe〈k
E〉)a
factorof2.2largerthank
〈E〉
)660s-1for〈E〉)95kcal/mol.
TheE
0
forthe〈k
E〉calculationwouldneedtoberaisedbyabout
1kcal/moltogiveagreementwiththek
〈E〉
.
erimentalrate
constantwasevaluatedwiththeassumptionthateachcollision
betweenthebathgasandCF
3
CHFCF
3
*(seeeq5)removed
sufficientenergysuchthatfurtherreactionwasnegligible
r,in
caseswherethediffer空谷足音的意思 encebetween〈E〉andE
0
islargeand/or
thecollisionpartnerisinefficient,amultistepdeactivation
rtocalculatearate
constantformultistepdeactivationtheaverageenergyremoved
percollisionandthemodel(stepladder,exponential,orsome
othermodel)fortheenergyremovalmechanismmustbeknown
thisinformationisavailablefor
CF
3
CHFCF
3
*collidingwithabathgasthatisamixtureofCF
3
I
andCF
3
mentalevidenceofmultistepdeactivation
wouldbetheupwardcurvatureofaD/Svs1/Pplotatlower
pressureswhereD/S>a,seeFigure1,doesnot
extendbeyondD/S)0.02,andnoevidenceformultistep
tion,wehavestudied32,33several
chemicallyactivatedhydrohalocarbonswithCF
3
Iandother
TABLE1:CalculatedFrequencies,MomentsofInertia,andReducedMomentsofInertiaforCF
3
CHFCF
3
andtheHF
EliminationTransitionStateatB3PW91/6-31G(d′,p′),B3LYP/6-31G(d),andB3PW91/6-311+G(2d,p)
CF
3
CHFCF
3
transition
6-31G(d′,p′)6-31G(d)6-311+G(2d,p)6-31G(d′,p′)6-31G(d)6-311+G(2d,p)
frequencies(cm-1)9.389a16.66a24.06a
83.56a87.52a85.12a52.44a54.13a51.09a
149.6153.6149.777.5679.1280.38
213.5215.3214.9156.2159.1153.1
234.5233.6239.2200.9199.7204.9
288.8288.5288.4240.7238.3235.7
322.3322.1319.7268.9263.9260.4
342.1341.1341.2287.1279.6271.1
454.9450.5449.9346.0344.6344.7
519.3512.0512.4374.7371.9368.9
537.4530.1531.6420.5419.3403.0
552.8546.3547.5504.0498.5499.6
608.1606.9602.5547.9544.6532.7
688.0683.7684.9599.4596.7595.2
743.4742.3739.8621.7618.7612.3
868.7875.9859.6716.1718.1694.7
917.0923.4910.1777.0775.8763.5
1145.21158.51114.8812.0813.4787.7
1156.81166.81141.71029.91033.21025.0
1212.31224.11168.91146.11142.31141.7
1246.01257.81212.51207.91217.11181.0
1273.61286.31225.01226.61232.81198.7
1297.11310.11273.01245.41257.31237.5
1330.01341.11305.11363.01368.91347.3
1394.51410.81377.31455.61468.71446.9
1407.91426.61394.31575.21580.81554.5
3106.43121.23097.61736.31733.21738.7
amu(2)I
x
242.1242.4241.5263.8265.0265.8
I
y
479.5478.5481.8510.9510.8513.6
I
z
544.1543.0545.9558.2556.9556.5
ReducedMomentofInertiaoftheCF
3
Group(I
red
)
I
red
(amu2)60.961.160.662.162.362.1
aFrequencyreplacedwithI
red
inhinderedinternalrotorandfreerotorratecalculations.
TABLE2:ComputedThresholdEnergiesusingDFTfor
HFEliminationfromCF
3
CHFCF
3
thresholdenergy(kcal/mol)
basisSetB3PW91B3LYP
6-31G(d)75.275.4
6-31G(d′,p′)71.771.7
cc-PVDZ69.769.7
6-311+G(2df,2p)69.769.7
6-311+G(2d,p)69.069.0
HFEliminationfromChemicallyActivatedCF
3
CHFCF
3
.A,Vol.114,No.26,20106999
hydrofluoroalkyliodidesasbathgasesandhavenotfound
evidenceforinefficientbehaviorintheD/eless,
theuseofthestrongcollisionassumptionforCF
3
CHFCF
3
*
collidingwithabathgascomparabletoourmixtureofCF
3
I
andCF
3
stionofmultistep
deactivationhasbeeninvestigatedfortwochemicallyactivated
molecules,CF
3
CH
3
43and1,1,2,2-tetrafluorocyclopropane,44with
astructureanalogoustoCF
3
CHFCF
3
.Forcyclo-CF
2
CF
2
CH
2
*
collidingwithCF
2dCF2
theaverageenergyremovedper
collisionwas9kcal/mol.44Themoreexhaustivestudy43of
CF
3
CH
3
*withnumerouscollisionpartnersshowedthatfor
moleculessimilartoourbathgastheaverageenergyremoved
percollisionwouldbe6-10kcal/mol.
TheHIRk
E
vsEcurvewithE
0
)74kcal/molinFigure2
willbeusedtoexaminewhetherthestrongcollisionassumption
isvalidforoursystem,andwewillassumethatourbathgas
mixtureremovesanaverageof6kcal/molfromCF
3
CHFCF
3
*
evethisistheworst-casescenariobecause
thestudieswithCF
3
CH
3
*andcyclo-CF
2
CF
2
CH
2
*suggestthat
eachcollisionwilllikelyremovemorethan6kcal/molof
〈E〉)95kcal/molthek
E
)660s-1,andif6kcal/
molisremovedbyonecollisiontherateconstantdeclinesto
34s-1at〈E〉)89kcal/ingjustonecollisionthat
removes6kcal/molofenergy,therateconstantisonly5%of
thevalueat〈E〉)95kcal/lativelylargedeclinein
k
E
isaconsequenceofthesteepslopeofthek
E
versusEcurve
portanttonotethatforthelowestpressures
inFigure1theD/S<0.02;thus,thecollisionrateisatleast50
timeslargerthank
E
asisofthis
analysis,thestrongcollisionassumptiondoesnotintroduceany
significantadditionalerrorintheassignmentofthethreshold
energy.
smodelingthe
productprofileforcombustionofCF
3
CHFCF
3
useArrhenius
utedk(T)fortheHIRmodel
withV(CF
3
))3kcal/molandI
red
)61amuhenius
parametersat1000Kforthefullreactionpathdegeneracyare
14.21013s-1andE
a
)77.2kcal/-exponential
factorforV(CF
3
))6kcal/molis20.4ange
arisesbecausetheHIRinthetransitionstateiscanceledby
oneinthemolecule,andthepartitionfunctionissmallerfor
oneremovesafactorof6forreactionpathdegeneracythepre-
exponentialfactoris“normal”foratighttransitionstate.31–34If
thepre-exponentialfactorfordissociationoftheC-Cbondis
1016s-1,thenHFeliminationisdominantat1000Kbut
dissociationwouldbecomecompetitivewithHFeliminationat
highertemperatures,consistentwiththeexperimentalfindings.1,26
edStructuresfortheReactant,Transition
State,3hasthebonddistanceandbond
anglesforthestructurescomputedusingB3PW91/6-31G(d′,p′)
forCF
3
CHFCF
3
,thetransitionstatestructureforHFlossand
theCF
2dCFCF3
followingdiscussionthe
carbonlosingthehydrogenisdesignatedC
H
,andC
F
represents
reeofsp2characterofthe
carbonsinthefour-centeredringofthetransitionstateis
illustratedbythe14.7angleatC
F
(theangledefinedbythe
triangularplanebetweentheCF
2
andanimaginaryline
extendingalongtheCdC)andthecorrespondingangleatC
H
is37.8,erence,theangleis55forasp3
carbonand0reeofplanaritydiffers
atthetwocarbonsinthetransitionstateringwiththecarbon
losingtheFbeingsignificantlymoreplanarthatthecarbon
artrend34ghasbeenobservedfor
interestingtonotethattheout-of-ringC-Fbonddistanceat
C
F
isshorterinthetransitionstate(1.29)thanineitherthe
reactant(1.34)ortheCF
2dCFCF3
product(1.31),sug-
gestingthatthefluorinesubstituentsaredonatingelectron
densitytoC
F
.Bycontrast,theout-of-ringC-Fbonddistance
(1.36)atC
H
isnearlythesameasintheCF
3
CHFCF
3
molecule
(1.37).TheC-Cbonddistanceinthering(1.43)isexactly
halfwaybetweenthebonddistanceofthereactant(1.53)
andproduct(1.33).
isonwithPreviousStudiesInvolvingHF
ecularrateconstantsforHFelimination
fromotherchemicallyactivatedfluoropropanes32(CF
3
CH
2
CF
3
,
CF
3
CHFCH
3
,andCF
3
CH
2
CH
3
)
previouslynoted32thegoodagreementbetweenthresholdenergy
valuesforthesehydroflrisonwouldbe
usefulbetweenCF
3
CHFCF
3
andCF
3
CH
2
CF
3
becauseforboth
fluoropropanesanHonthecentralcarboniseliminatedtogether
withanFatomfromeitherendCF
3
3
CH
2
CF
3
the
〈E〉)104kcal/mol,kHF
)1.2105s-1,andE
0
)73kcal/
molcomparedto〈E〉)95kcal/mol,k
HF
)4.5102s-1,and
E
0
)75kcal/molforCF
3
CHFCF
3
.33Theexperimentalrate
constantisafactorof270smallerforCF
3
CHFCF
3
compared
toCF
3
CH
2
CF
3
.Adifferenceof9kcal/molin〈E〉accountsfor
afactorof30intherateconstant,forexample,for〈E〉)95
kcal/molthecalculatedk
HF
)8.8102s-1forCF
3
CHFCF
3
andat〈E〉)104kcal/molthek
HF
)2.90104s-1,whichis
ionpathdegeneracyof6for
flogk
E
vsEforhinderedinternalrotor(HIR)and
torsional(TOR)modelsforvariousE
0
usingresultsfromtheB3PW91/
6-31G(d′,p′)calculationsunlessspecifiedasG(d)orG(2d,p)forthe
B3LYP/6-31G(d)ortheB3PW91/6-311+G(2d,p)calculations,respec-
tively.[HIR,E
0
)74kcal/molwithtwodifferentbasissets:O-
B3PW91/6-31G(d′,p′)andb-B3LYP/6-31G(d)];[0-TOR,E
0
)74
kcal/molusingB3PW91/6-31G(d′,p′)];[HIR,E
0
)76kcal/molusing
twodifferentmethodsandbasissets:[[-B3PW91/6-31G(d′,p′)and
4-B3LYP/6-31G(d)]and[2-HIR,E0
)77kcal/molusingB3PW91/
6-31G(d′,p′)].
.A,Vol.114,No.26,2010Duncanetal.
CF
3
CHFCF
3
versus12forCF
3
CH
2
CF
3
accountsforanad-
ditionalfactorof2.33Atwokcal/mollowerthresholdenergy
willincreasetheunimolecularrateconstantbyaboutafactor
of4,eefactorscombinedcontributeafactor
ofover240tothedifferenceinrateconstants,showingthat
theRRKMmodelsforthetwomoleculesareactuallyquite
consistentdespitethelargedifferenceintheactualrateconstants.
PetersonandFrancisco28computationallyinvestigatedthe
possibledecompositionpathwaysforCF
3
CHFCF
3
usingabinitio
methodsandbasissetstestedthey
foundE
0>95kcal/molforthe2,2-HFeliminationreaction
formingtheCF
3
CCF
3
dnoevidencefor
1,2-
HFeliminationreactionPetersonandFranciscopredictedan
E
0
rangingfrom75.4[B3LYP/6-31G(d)]to89.1kcal/mol
[QCISD(T)/6-31G(d)]andrecommended79.5kcal/molbased
uponQCISD(T)/6-311G(d,p).Ourresultsusing〈E〉)95kcal/
molareconsistentonlywiththesmallestE
0
calculatedby
PetersonandFrancisco.
AcomparisonofthevariousE
0
valuescanalsobeusefulto
ngthat
CF
3
CH
3
withE
0
)69kcal/molistheselectedforcomparison32
thenE
0
)73kcal/mol33forCF
3
CH
2
CF
3
suggeststhatreplace-
mentofoneHofCF
3
CH
3
withaCF
3
groupraisesE
0
by4
kcal/sentworkwithE
0
)75kcal/molfor
CF
3
CHFCF
3
suggestedthatreplacementofasecondHwith
atomicFmayincreaseE
0
byanadditional2kcal/mol.
sions
TheunimolecularrateconstantforHFeliminationfrom
CF
3
CHFCF
3
chemicallyactivatedat95kcal/molwask
HF
)4.5
ngcomputedrateconstantstotheexperimental
measurementforHFeliminationfromchemicallyactivated
CF
3
CHFCF
3
at〈E〉)95kcal/molgivesE
0
(HF))75(2kcal/
oldenergiesfor1,2-HFel七夕图片浪漫唯美图片 iminationfromfluoro-
propanesspan20kcal/molfromthesimplestmemberofthe
seriesCH
3
CHFCH
3
45,46(E
0
)55kcal/mol)33aandCH
3
CH
2
CH
2
F46,47
(E
0
)57kcal/mol)33atoCF
3
CHFCF
3
,themosthighlyfluori-
ral,32,33a
replacementofHbyFonacarbonincreasestheE
0
by2-4
kcal/ationofFfromthecentralcarbonhasalower
E
0
thanlossofFfromtheendcarbonifthetotalnumberofF
substituentsgenerallydecrease32,33a
theE
0
,buttheeffectismorepronouncedatC
F
thanwhen
attachedtoC
H
.
ialsupportfromtheNational
ScienceFoundation(CHE-0647582)
for
sorSetserkindlyassistedincomput-
ingtheArrheniusA-factorandtheenergydistributionforthe
chemicallyactivatedCF
3
CHFCF
3
.
SupportingInformationAvailable:Theenergydistribution
computedfromanassociationcomplexforthechemically
activatedCF
3
CHFCF
3
andaGC/MStraceofaphotolyzed
formationisavailablefreeofcharge
viatheInternetat.
ReferencesandNotes
(1)Williams,B.A.;L’Esperance,D.M.;Fleming,t.
Flame2000,120,160.
(2)Lee,E.P.F.;Dyke,J.M.;Chau,F.-T.;Chow,W.-K.;Mok,
.2003,376,465.2005,402,32.
(3)Bundy,M.;Hamins,A.;Lee,2003,133,
299,andreferencestherein.
(4)Fleming,.1999,16.
(5)Robin,.1995,611,85.
(6)Jiang,Z.;Chow,W.K.;Li,.2007,24,
663.
(7)Froeba,A.P.;Botero,C.;Leipertz,phys.2006,
27,1609.
(8)Coquelet,C.;Rivollet,F.;Jarne,C.;Valtz,A.;Richon,
.2006,47,3672.
(9)Yousefi,F.;Moghadasi,J.;Papari,M.M.;Campo,.
.2009,48,5079.
(10)Zatorski,W.;Brzozowski,Z.K.;Kolbrecki,.
Stab.2008,93,2071.
atedstructuresforCF
3
CHFCF
3
,thetransitionstate
forHFelimination,andCF
2dCFCF3
attheB3PW91/6-31G元旦王安石的诗 (d′,p′)
method.
HFEliminationfromChemicallyActivatedCF
3
CHFCF
3
.A,Vol.114,No.26,20107001
(11)Saso,Y.;Seki,T.;Chono,S.;Morimoto,liVerySci.
Technol.2006,16,147.
(12)Engstrom,J.D.;Tam,J.M.;Miller,M.A.;Williams,R.O.,III;
Johnston,.2009,26,101.
(13)Auwaerter,V.;Proquitte,H.;Schmalisch,G.;Wauer,R.;Pragst,
logy2005,29,574.
(14)Sanogo,O.;Delfau,J.L.;Akrich,R.;Vovelle,.
Technol.1997,122,33.
(15)Hsu,K.-J.;DeMore,.1995,99,1235.
(16)Nelson,D.D.,Jr.;Zahniser,M.S.;Kolb,.
1993,20,197.
(17)Ritter,.1997,209.
(18)Hynes,R.G.;Mackie,J.C.;Masri,Fuels1999,13,
485.
(19)(a)Lee,E.P.F.;Dyke,J.M.;Chow,W.-K.;Chau,F.-T.;Mok,
.2006,417,.2007,28,
1582.(b)Copeland,G.;Lee,E.P.F.;Dyke,J.M.;Chow,W.K.;Mok,
D.K.W.;Chau,.A2010,114,3540.
(20)Zhang,Z.;Padmaja,S.;Saini,R.D.;Huie,R.E.;Kurylo,M.J.J.
.1994,98,4312.
(21)Urata,S.;Takada,A.;Uchimaru,T.;Chandra,.
Lett.2002,368,215.
(22)Liu,J.;Li,Z.;Dai,Z.;Huang,X.;Sun,.2002,
362,39.
(23)Yamamoto,O.;Takahashi,K.;Inomata,.A2004,
108,1417.
(24)DeMore,iol.A2005,176,129.
(25)Tokuhashi,K.;Chen,L.;Kutsuna,S.;Uchimaru,T.;Sugie,M.;
Sekiya,neChem.2004,125,1801.
(26)(a)Hynes,R.G.;Mackie,J.C.;Masri,.A
1999,103,54.(b)Hynes,R.G.;Mackie,J.C.;Masri,t.
Flame1998,113,554.
(27)Ikeda,E.;Mackie,2001,215,997.
(28)Peterson,S.D.;Francisco,.A1999,103,54.
(29)Holbrook,K.A.;Pilling,M.J.;Robinson,40不惑50知天命60花甲70 ecular
Reactions,2nded.;JohnWileyandSons:NewYork,1996.
(30)Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G.E.;Robb,
M.A.;Cheeseman,J.R.;Montgomery,J.A.,Jr.;Vreven,T.;Kuden,K.N.;
Burant,J.C.;Millam,J.M.;Iyengar,S.S.;Tomasi,J.;Barone,V.;
Mennucci,B.;Cossi,M.;Scalmani,G.;Bega,N.;Petersson,G.A.;
Nakatsuji,H.;Hada,M.;Ehara,M.;Toyota,K.;Fukuda,R.;Hasegawa,J.;
Ishida,M.;Nakajima,T;Honda,Y.;Kitao,O.;Adamo,C.;Jaramillo,J.;
Gomperts,R.;Stratman,R.E.;Yazyev,O.;Austen,A.J.;Cammi,R.;
Pomelli,C.;Ochterski,J.W.;Ayala,P.Y.;Morokuma,K.;Voth,G.A.;
Salvador,P.;Dannenberg,J.J.;Zakrzewksi,V.G.;Dapprich,S.;Daniels,
A.D.;Strain,M.C.;Farkas,O.;Malik,D.K.;Rabuck,A.D.;Raghavachari,
K.;Foresman,J.B.;Ortiz,J.V.;Cui,Q.;Baboul,A.G.;Clifford,S.;
Cioslowski,J.;Stefanov,B.B.;Liu,G.;Liashenko,A.;Piskorz,P.;
Komaromi,I.;Martin,R.L.;Fox,D.J.;Keith,-Laham,M.A.;Peng,
C.Y.;Nanayakkara,A.;Challacombe,M.;Gill,P.M.W.;Johnson,B.;
Chen,W.;Wong,M.W.;Gonzalez,,an03,ReVision
B.04;Gaussian,Inc.:Pittsburg,PA,2003.
(31)Martell,J.M.;Beaton,P.J.;Holmes,.A2002,
106,8471.
(32)Holmes,D.A.;Holmes,.A2005,109,10726.
(33)(a)Ferguson,J.D.;Johnson,N.L.;Keknes-Husker,P.M.;Everett,
W.C.;Heard,G.L.;Setser,D.W.;Holmes,.A2005,
109,4540.(b)Zhu,L.;Simmons,J.G.,Jr.;Burgin,M.O.;Setser,D.W.;
Holmes,.A2006,110,1506.
(34)(a)Burgin,M.O.;Simmons,J.G.,Jr.;Heard,G.L.;Setser,D.W.;
Holmes,.A2007,111,2283.(b)Beaver,M.R.;
Simmons,J.G.,Jr.;Heard,G.L.;Setser,D.W.;Holmes,.
Chem.A2007,111,8445.(c)Lisowski,C.E.;Duncan,J.R.;Heard,G.L.;
Setser,D.W.;Holmes,.A2007,111,8445.(d)
Zaluzhna,O.;Simmons,J.G.,Jr.;Heard,G.L.;Setser,D.W.;Holmes,B.
.A2008,112,6090.(e)Zaluzhna,O.;Simmons,J.G.,Jr.;
Setser,D.W.;Holmes,.A2008,112,12117.(f)
Ferguson,H.A.;Parworth,C.L.;Holloway,T.S.;Midgett,A.G.;Heard,
G.L.;Setser,D.W.;Holmes,.A2009,113,10013.
(g)Duncan,J.R.;Solaka,S.A.;Setser,D.W.;Holmes,.
Chem.A,2010,114,794.
(35)Holmes,B.E.;Paisley,S.D.;Rakestraw,D.J.;King,.
.1986,18,365.
(36)Chase,M.W.,-JANAFThemochemicalTables,Fourth
,Monograph91998,1.
(37)Zachariah,M.R.;Westmoreland,P.R.;Burgess,D.R.,Jr.;Tsang,
W.;Melius,.1996,100,8737.
(38)Zhang,X.-.1998,63,3590.
(39)Haworth,N.L.;Smith,M.H.;Bacskay,G.B.;Mackie,J.C.J.
.A2000,104,7600.
(40)Krespan,C.G.;Dixon,.1998,63,36.
(41)Orlov,Y.D.;Zaripov,R.K.;Lebedev,.
1998,47,621.
(42)(a)Barker,.2001,33,232.(b)Barker,
.2009,41,748.
(43)(a)Marcoux,P.J.;Setser,.1979,83,3168.
(b)Chang,H.W.;Craig,N.L.;Setser,.1972,76,
954.(c)Marcoux,P.J.;Siefert,E.E.;Setser,.
1975,7,473.
(44)Arbilla,F.G.;Ferrero,J.C.;Staricco,.1983,
87,3906.
(45)Kim,K.C.;Setser,.1973,77,2021.
(46)Cadman,P.;Day,M.;Trotman-Dickenson,.A
1971,248.
(47)Cadman,P.;Day,M.;Trotman-Dickenson,.A
1970,2498.
JP100195E
.A,Vol.114,No.26,2010Duncanetal.
更多推荐
halon是什么意思on在线翻译读音例句
发布评论