porta是什么意思ta的用法读音典-之路
2023年4月3日发(作者:friendship)
FrugalityRatiosAndImprovedTruthfulMechanismsfor
VertexCover∗
EdithElkind
HebrewUniversityof
Jerusalem,Israel,and
UniversityofSouthampton,
Southampton,SO171BJ,U.K.
LeslieAnnGoldberg
UniversityofLiverpool
LiverpoolL693BX,U.K.
PaulGoldberg
UniversityofLiverpool
LiverpoolL693BX,U.K.
ABSTRACT
Inset-systemauctions,thereareseveraloverlappingteamsofagents,
-
tioneer’-
plesofthissettingincludeshortest-pathauctionsandvertex-cover
ly,Karlin,KempeandTamirintroducedanewdef-
ally,the“frugality
ratio”istheratioofthetotalpaymentofamechanismtoadesired
iocapturestheextenttowhichthemecha-
nismoverpays,relativetoperceivedfaircostinatruthfulauction.
Inthispaper,weproposeanewtruthfulpolynomial-timeauction
thatthesolutionqualityiswithaconstantfactorofoptimaland
thefrugalityratioiswithinaconstantfactorofthebestpossible
worst-casebound;thisisthefirstauctionforthisproblemtohave
er,weshowhowtotransformanytruth-
fulauctionintoafrugalonewhilepreservingtheapproximation
,weconsidertwonaturalmodificationsofthedefinition
ofKarlinetal.,andweanalysethepropertiesoftheresultingpay-
mentbounds,suchasmonotonicity,computationalhardness,and
ythe
relationshipsbetweenthedifferentpaymentbounds,bothforgen-
eralsetsystemsandforspecificset-systemauctions,suchaspath
hesenewdefinitions
intheproofofourmainresultforvertex-coverauctionsviaaboot-
strappingtechnique,whichmaybeofindependentinterest.
CategoriesandSubjectDescriptors
F.2[TheoryofComputation]:AnalysisofAlgorithmsandProb-
lemComplexity;J.4[ComputerApplications]:SocialandBehav-
ioralSciences—economics
GeneralTerms
Algorithms,Economics,Theory
c
CD
=0,c
AC
=c
BD
=aphis2-connectedandthe
r,
thegraphcontainsnoA–DpaththatisdisjointfromABCD,and
hencethefrugalityratioofVCGonthisgraphremainsundefined.
Atthesametime,thereisnomonopoly,thatis,thereisnoven-
ionsforothertypesof
setsystems,therequirementthatthereexistafeasiblesolutiondis-
jointfromtheselectedoneisevenmoresevere:forexample,for
vertex-coverauctions(wherevendorscorrespondtotheverticesof
someunderlyinggraph,andthefeasiblesetsarevertexcovers)the
with
thisproblem,Karlinetal.[16]suggestabetterbenchmark,which
isdefiantity,which
theydenoteby,intuitivelycorrespondstothevalueofacheapest
nthisnewdefinition,theauthorscon-
structnewmechanismsfortheshortestpathproblemandshowthat
theoverpaymentofthesemechanismsiswithinaconstantfactorof
optimal.
1.1Ourresults
VertexcoverauctionsWeproposeatruthfulpolynomial-time
auctionforvertexcoverthatoutputsasolutionwhosecostiswithin
afactorof2ofoptimal,andwhosefrugalityratioisatmost2∆,
where∆isthemaximumdegreeofthegraph(Theorem4).We
complementthisresultbyproving(Theorem5)thatforany∆and
n,therearegraphsofmaximumdegree∆andsize(n)forwhich
anytruthfulmechanismhasfrugalityratioatleast∆/ans
thatthesolutionqualityofourauctioniswithafactorof2ofop-
timalandthefrugalityratioiswithinafactorof4ofthebestpos-
estofourknowledge,
thisisthefirstauctionforthisproblemthatenjoystheseproper-
er,weshowhowtotransformanytruthfulmechanism
forthevertex-coverproblemintoafrugalonewhilepreservingthe
approximationratio.
FrugalityratiosOurvertexcoverresultsnaturallysuggesttwo
modificationsofthedefinitionofin[16].Thesemodifications
canbemadeindependentlyofeachother,resultinginfourdiffer-
entpaymentboundsTUmax,TUmin,NTUmax,andNTUmin,
whereNTUminisequaltotheoriginalpaymentboundofin[16].
AllfourpaymentboundsariseasNashequilibriaofcertaingames
(seethefullversionofthispaper[8]);thedifferencesbetween
themcanbeseenas“thepriceofinitiative”and“thepriceofco-
operation”(seeSection3).Whileourmainresultaboutvertex
coverauctions(Theorem4)iswithrespecttoNTUmin=,we
makeuseofthenewdefinitionsbyfirstcomparingthepaymentof
ourmechanismtoaweakerboundNTUmax,andthenbootstrap-
pingfromthisresulttoobtainthedesiredbound.
Inspiredbythisapplication,weembarkonafurtherstudyof
ultshereareasfollows:
rve(Proposition1)thatthefourpaymentboundsal-
waysobeyaparticularorderthatisindependentofthechoiceof
thesetsystemandthecostvector,namely,TUmin≤NTUmin≤
NTUmax≤ideexamples(Proposition5and
Corollaries1and2)showingthatforthevertexcoverproblemany
twoconsecutiveboundscandifferbyafactorofn−2,wherenis
show(Theorem2)thatthissepara-
tionisalmostbestpossibleforgeneralsetsystemsbyprovingthat
foranysetsystemTUmax/TUmin≤rast,wedemon-
strate(Theorem3)thatforpathauctionsTUmax/TUmin≤2.
Weprovideexamples(Propositions2,3and4)showingthatthis
hisasanargumentforthestudyofvertex-
coverauctions,astheyappeartobemorerepresentativeofthegen-
eralteam-selectionproblemthanthewidelystudiedpathauctions.
(Theorem1)thatforanysetsystem,ifthereisacost
vectorforwhichTUminandNTUmindifferbyafactorof,
thereisanothercostvectorthatseparatesNTUminandNTUmax
bythesamefactorandviceversa;thesameistrueforthepairs
(NTUmin,NTUmax)and(NTUmax,TUmax).Thissymme-
tryisquitesurprising,,TUminandNTUmaxareob-
observationsuggeststhatthefourpaymentboundsshouldbestud-
iedinaunifiedframework;moreover,itleadsustobelievethatthe
bootstrappingtechniqueofTheorem4mayhaveotherapplications.
uatethepaymentboundsintroducedherewithrespect
icular,wenotethatthe
paymentbound=NTUminof[16]exhibitssomecounterintu-
itiveproperties,suchasnonmonotonicitywithrespecttoaddinga
newfeasibleset(Proposition7),andisNP-hardtocompute(Theo-
rem6),whilesomeoftheotherpaymentboundsdonotsufferfrom
nbeseenasanargumentinfavourofusing
weakerbutefficientlycomputableboundsNTUmaxandTUmax.
Relatedwork
Vertex-coverauctionshavebeenstudiedinthepastbyTalwar[21]
andCalinescu[5].Bothofthesepapersarebasedonthedefinition
offrugalityratiousedin[1];asmentionedbefore,thismeansthat
[21]showsthat
thefrugalityratioofVCGisatmost∆.However,sincefinding
thecheapestvertexcoverisanNP-hardproblem,theVCGmech-
first(and,tothebestof
ourknowledge,only)papertoinvestigatepolynomial-timetruthful
mechanismsforvertexcoveris[5].Thispaperstudiesanauction
thatisbasedonthegreedyallocationalgorithm,whichhasanap-
hemainfocusof[5]isthemore
generalsetcoverproblem,theresultsof[5]implyafrugalityratio
of2∆ultsimproveonthoseof[21]as
ourmechanismispolynomial-timecomputable,aswellasonthose
of[5],asourmechanismhasabetterapproximationratio,andwe
proveastrongerboundonthefrugalityratio;moreover,thisbound
alsoappliestothemechanismof[5].
INARIES
Inmostofthispaper,wediscussauctionsforsetsystems.A
setsystemisapair(E,F),whereEisthegroundset,|E|=n,
andFisacollectionoffeasiblesets,
particulartypesofsetsystemsareofinteresttous—shortestpath
systems,inwhichthegroundsetconsistsofalledgesofanetwork,
andthefeasiblesetsarepathsbetweentwospecifiedverticessand
t,andvertexcoversystems,inwhichtheelementsofthegroundset
aretheverticesofagraph,andthefeasiblesetsarevertexcoversof
thisgraph.
Insetsystemauctions,eachelementeofthegroundsetisowned
byanindependentagentandhasanassociatednon-negativecostc
e
.
Thegoalofthecentreistoselect(purchase)
elementeintheselectedsetincursacostofc
e
.Theelementsthat
arenotselectedincurnocosts.
Theauctionproceedsasfollows:allelementsofthegroundset
maketheirbids,thecentreselectsafeasiblesetbasedonthebids
ly,anauctionisdefined
byanallocationruleA:Rn→FandapaymentruleP:Rn→
ocationruletakesasinputavectorofbidsanddecides
mentrulealso
takesasinputavectorofbidsanddecideshowmuchtopaytoeach
,
thepaymenttoeachagentshouldbeatleastashighashisincurred
cost(0foragentsnotintheselectedsetandc
e
foragentsinthe
selectedset)andincentivecompatibility,,each
agent’sdominantstrategyistobidhistruecost.
Anallocationruleismonotoneifanagentcannotincreasehis
ly,foranybid
vectorbandanye∈E,ife∈A(b)thene∈A(b
1
,...,b′
e
,...,b
n
)
foranyb′
e
>b
e
.GivenamonotoneallocationruleAandabid
vectorb,thethresholdbidt
e
ofanagente∈A(b)isthehighest
bidofthisagentthatstillwinstheauction,giventhatthebidsof
ly,t
e
=sup{b′
e
∈R|
e∈A(b
1
,...,b′
e
,...,b
n
)}.Itiswellknown([19,13])
thatanyauctionthathasamonotoneallocationruleandpayseach
agenthisthresholdbidistruthful;conversely,anytruthfulauction
hasamonotoneallocationrule.
TheVCGmechanismisatruthfulmechanismthatmaximises
the“socialwelfare”system
auctions,thissimplymeanspickingacheapestfeasibleset,paying
eachagentintheselectedsethisthresholdbid,andpaying0to
,however,thattheVCGmechanismmaybe
difficulttoimplement,sincefindingacheapestfeasiblesetmaybe
intractable.
IfUisasetofagents,c(U)denotesPw∈U
c
w
.Similarly,b(U)
denotesPw∈U
b
w
.
ITYRATIOS
Westartbyreproducingthedefinitionofthequantityfrom[16,
Definition4].
Let(E,F)beasetsystemandletSbeacheapestfeasibleset
withrespecttothetruecostsc
e
.Then(c,S)isthesolutiontothe
followingoptimisationproblem.
MinimiseB=Pe∈S
b
e
subjectto
(1)b
e
≥c
e
foralle∈E
(2)Pe∈ST
b
e
≤Pe∈TS
c
e
forallT∈F
(3)foreverye∈S,thereisaT
e
∈Fsuchthate∈T
e
andPe
′
∈ST
e
b
e
′=Pe
′
∈T
e
S
c
e
′
Thebound(c,S)canbeseenasanoutcomeofatwo-stage
process,wherefirsteachagente∈Smakesabidb
e
statinghow
muchitwantstobepaid,andthenthecentredecideswhetherto
aviourofbothpartiesisaffectedbythe
ecentre’spointofview,theset
,itmustbeamong
thecheapestfeasiblesetsunderthenewcostsc′
e
=c
e
fore∈S,
c′
e
=b
e
fore∈S(condition(2)).Thereasonforthatisthat
if(2)isviolatedforsomesetT,thecentrewouldpreferTtoS.
Ontheotherhand,noagentwouldagreetoapaymentthatdoes
notcoverhiscosts(condition(1)),andmoreover,eachagenttries
tomaximisehisprofi,none
oftheagentscanincreasehisbidwithoutviolatingcondition(2)
(condition(3)).Thecentrewantstominimisethetotalpayout,so
(c,S)correspondstothebestpossibleoutcomefromthecentre’s
pointofview.
Thisdefinitioncapturesmanyimportantaspectsofourintuition
about‘fair’r,itcanbemodifiedintwoways,
bothofwhicharestillquitenatural,butresultindifferentpayment
bounds.
First,wecanconsidertheworstratherthanthebestpossibleout-
,wecanconsiderthemaximumtotal
paymentthattheagentscanextractbyjointlyselectingtheirbids
subjectto(1),(2),and(3).Suchaboundcorrespondstomaximis-
ingBsubjectto(1),(2),and(3)
istheagentswhomaketheoriginalbids(ratherthanthecentre),
therhand,ina
gameinwhichthecentreproposespaymentstotheagentsinSand
theagentsacceptthemaslongas(1),(2)and(3)aresatisfied,we
wouldbelikelytoobserveatotalpaymentof(c,S).Hence,the
differencebetweenthesetwodefinitionscanbeseenas“theprice
ofinitiative”.
Second,theagentsmaybeabletomakepaymentstoeachother.
Inthiscase,iftheycanextractmoremoneyfromthecentreby
,
condition(1))forsomebidders,theymightbewillingtodoso,as
theagentswhoarepaidbelowtheircostswillbecompensatedby
,
theyhavetosatisfyb
e
≥ultingchangeinpaymentscan
beseenas“thepriceofco-operation”andcorrespondstoreplacing
condition(1)withthefollowingweakercondition(1∗):
b
e
≥0foralle∈E.(1∗)
Byconsideringallpossiblecombinationsofthesemodifications,
weobtainfourdifferentpaymentbounds,namely
•TUmin(c,S),whichisthesolutiontotheoptimisationprob-
lem“MinimiseB”subjectto(1∗),(2),and(3).
•TUmax(c,S),whichisthesolutiontotheoptimisationprob-
lem“MaximiseB”subjectto(1∗),(2),and(3).
•NTUmin(c,S),whichisthesolutiontotheoptimisation
problem“MinimiseB”subjectto(1),(2),and(3).
•NTUmax(c,S),whichisthesolutiontotheoptimisation
problem“MaximiseB”subjectto(1),(2),(3).
TheabbreviationsTUandNTUcorrespond,respectively,totrans-
,theagents’abil-
ity/creteness,
wewilltakeTUmin(c)tobeTUmin(c,S)whereSisthelex-
-
fineTUmax(c),NTUmin(c),NTUmax(c)and(c)similarly,
thoughwewillseeinSection6.3that,infact,NTUmin(c,S)and
NTUmax(c,S)atthe
quantity(c)from[16]isNTUmin(c).
Thesecondmodification(transferableutility)ismoreintuitively
appealinginthecontextofthemaximisationproblem,asbothas-
he
secondmodificationcanbemadewithoutthefirst,theresulting
paymentboundTUmin(c,S)istoostrongtobearealisticbench-
mark,icular,itcanbesmaller
thanthetotalcostofthecheapestfeasiblesetS(seeSection6).
Nevertheless,weprovidethedefinitionaswellassomeresults
aboutTUmin(c,S)inthepaper,bothforcompletenessandbe-
causewebelievethatitmayhelptounderstandwhichproperties
rpos-
sibilitywouldbetointroduceanadditionalconstraintPe∈S
b
e
≥Pe∈S
c
e
inthedefinitionofTUmin(c,S)(notethatthiscondi-
tionholdsautomaticallyforTUmax(c,S),asTUmax(c,S)≥
NTUmax(c,S));however,suchadefinitionwouldhavenodirect
game-theoreticinterpretation,andsomeofourresults(inparticu-
lar,theonesinSection4)wouldnolongerbetrue.
paymentboundsthatarederivedfrommax-
imisationproblems,(i.e.,TUmax(c,S)andNTUmax(c,S)),con-
straintsoftype(3),
TUmax(c,S)andNTUmax(c,S)aresolutionstolinearpro-
grams,andthereforecanbecomputedinpolynomialtimeaslong
aswehaveaseparationoracleforconstraintsin(2).Incontrast,
NTUmin(c,S)canbeNP-hardtocomputeevenifthesizeofFis
polynomial(seeSection6).
Thefirstandthirdinequalitiesinthefollowingobservationfol-
lowfromthefactthatcondition(1∗)isstrictlyweakerthancondi-
tion(1).
PROPOSITION1.
TUmin(c,S)≤NTUmin(c,S)≤
NTUmax(c,S)≤TUmax(c,S).
LetMbeatruthfulmechanismfor(E,F).Letp
M
(c)denote
lity
ratioofMwithrespecttoapaymentboundistheratiobetween
icular,
TUmin
(M)=sup
c
p
M
(c)/TUmin(c),
TUmax
(M)=sup
c
p
M
(c)/TUmax(c),
NTUmin
(M)=sup
c
p
M
(c)/NTUmin(c),
NTUmax
(M)=sup
c
p
M
(c)/NTUmax(c).
Weconcludethissectionbyshowingthatthereexistsetsystems
andrespectivecostvectorsforwhichallfourpaymentboundsare
extsection,wequantifythisdifference,bothfor
generalsetsystems,andforspecifictypesofsetsystems,suchas
pathauctionsorvertexcoverauctions.
ertheshortest-pathauctiononthegraph
canbeverified,usingthereasoningofPropositions2and3below,
thatforthecostvectorc
AB
=c
CD
=2,c
BC
=1,c
AC
=c
BD
=
5,wehave
•TUmax(c)=10(withb
AB
=b
CD
=5,b
BC
=0),
•NTUmax(c)=9(withb
AB
=b
CD
=4,b
BC
=1),
•NTUmin(c)=7(withb
AB
=b
CD
=2,b
BC
=3),
•TUmin(c)=5(withb
AB
=b
CD
=0,b
BC
=5).
INGPAYMENTBOUNDS
4.1Pathauctions
Westartbyshowingthatforpathauctionsanytwoconsecutive
paymentboundscandifferbyatleastafactorof2.
saninstanceoftheshortest-pathprob-
lemforwhichwehaveNTUmax(c)/NTUmin(c)≥2.
nstructionisduetoDavidKempe[17].Con-
siderthegraphofFigure1withtheedgecostsc
AB
=c
BC
=
c
CD
=0,c
AC
=c
BD
=hesecosts,ABCDisthe
qualitiesin(2)areb
AB
+b
BC
≤c
AC
=1,
b
BC
+b
CD
≤c
BD
=ition(3),bothoftheseinequal-
itiesmustbetight(theformeroneistheonlyinequalityinvolv-
ingb
AB
,andthelatteroneistheonly反义词都有什么 inequalityinvolvingb
CD
).
Theinequalitiesin(1)areb
AB
≥0,b
BC
≥0,b
CD
≥,
ifthegoalistomaximiseb
AB
+b
BC
+b
CD
,thebestchoiceis
b
AB
=b
CD
=1,b
BC
=0,soNTUmax(c)=ther
hand,ifthegoalistominimiseb
AB
+b
BC
+b
CD
,oneshouldset
b
AB
=b
CD
=0,b
BC
=1,soNTUmin(c)=1.
saninstanceoftheshortest-pathprob-
lemforwhichwehaveTUmax(c)/NTUmax(c)≥2.
,edge
costsbec
AB
=c
CD
=0,c
BC
=1,c
AC
=c
BD
=
isthelexicographically-leastcheapestpath,sowecanassumethat
S={AB,BC,CD}.Theinequalitiesin(2)arethesameasin
thepreviousexample,andbythesameargumentbothofthemare,
infact,qualitiesin(1)areb
AB
≥0,b
BC
≥1,
b
CD
≥listomaximiseb
AB
+b
BC
+b
CD
.Ifwehave
torespecttheinequalitiesin(1),wehavetosetb
AB
=b
CD
=0,
b
BC
=1,soNTUmax(c)=ise,wecansetb
AB
=
b
CD
=1,b
BC
=0,soTUmax(c)≥2.
saninstanceoftheshortest-pathprob-
lemforwhichwehaveNTUmin(c)/TUmin(c)≥2.
nstructionisalsobasedonthegraphofFigure1.
Theedgecostsarec
AB
=c
CD
=1,c
BC
=0,c
AC
=c
BD
=
thelexicographicallyleastcheapestpath,sowecan
assumethatS={AB,BC,CD}.Again,theinequalitiesin(2)
arethesame,andbothare,infact,qualitiesin(1)
areb
AB
≥1,b
BC
≥0,b
CD
≥listominimiseb
AB
+
b
BC
+b
CD
.Ifwehavetorespecttheinequalitiesin(1),wehaveto
setb
AB
=b
CD
=1,b
BC
=0,soNTUmin(c)=ise,
wecansetb
AB
=b
CD
=0,b
BC
=1,soTUmin(c)≤1.
InSection4.4(Theorem3),weshowthattheseparationresults
inPropositions2,3,and4areoptimal.
4.2Connectionsbetweenseparationresults
Theseparationresultsforpathauctionsareobtainedonthesame
soutthatthisisnot
,wecanprovethefollowingtheorem.
setsystem(E,F),andanyfeasiblesetS,
max
c
TUmax(c,S)
NTUmin(c,S)
,
max
c
NTUmax(c,S)
TUmin(c,S)
,
wherethemaximumisoverallcostvectorscforwhichSisa
cheapestfeasibleset.
Theproofofthetheoremfollowsdirectlyfromthefourlemmas
provedbelow;moreprecisely,thefirstequalityinTheorem1is
obtainedbycombiningLemmas1and2,andthesecondequalityis
eLemma1here;
theproofsofLemmas2–4aresimilarandcanbefoundinthefull
versionofthispaper[8].
ethatcisacostvectorfor(E,F)suchthat
SisacheapestfeasiblesetandTUmax(c,S)/NTUmax(c,S)=
.Thenthereisacostvectorc′suchthatSisacheapestfeasible
setandNTUmax(c′,S)/NTUmin(c′,S)≥.
ethatTUmax(c,S)=XandNTUmax(c,S)=
YwhereX/Y=.AssumewithoutlossofgeneralitythatS
consistsofelements1,...,k,andletb1=(b1
1
,...,b1
k
)andb2=
(b2
1
,...,b2
k
)bethebidvectorsthatcorrespondtoTUmax(c,S)
andNTUmax(c,S),respectively.
Constructthecostvectorc′bysettingc′
i
=c
i
fori∈S,
c′
i
=min{c
i
,b1
i
}fori∈y,Sisacheapestsetunderc′.
Moreover,asthecostsofelementsoutsideofSremainedthesame,
theright-handsidesofallconstraintsin(2)didnotchange,soany
bidvectorthatsatisfies(2)and(3)withrespecttoc,alsosatisfies
themwithrespecttoc′.Wewillconstructtwobidvectorsb3and
b4thatsatisfyconditions(雪人图片 1),(2),and(3)forthecostvectorc′,and
X
X
X
X
X
0
X
1
2
3
X
45
6
Figure2:Graphthatseparatespaymentboundsforvertex
cover,n=7
havePi∈S
b3
i
=X,Pi∈S
b4
i
=ax(c′,S)≥X
andNTUmin(c′,S)≤Y,thisimpliesthelemma.
Wecansetb3
i
=b1
i
:thisbidvectorsatisfiesconditions(2)
and(3)sinceb1does,andwehaveb1
i
≥min{c
i
,b1
i
}=c′
i
,
whichmeansthatb3satisfiescondition(1).Furthermore,wecan
setb4
i
=b2
i
.Again,b4satisfiesconditions(2)and(3)sinceb2
does,andsinceb2satisfiescondition(1),wehaveb2
i
≥c
i
≥c′
i
,
whichmeansthatb4satisfiescondition(1).
ecisacostvectorfor(E,F)suchthatSis
acheapestfeasiblesetandNTUmax(c,S)/NTUmin(c,S)=.
Thenthereisacostvectorc′suchthatSisacheapestfeasibleset
andTUmax(c′,S)/NTUmax(c′,S)≥.
ethatcisacostvectorfor(E,F)suchthat
SisacheapestfeasiblesetandNTUmax(c,S)/红军故事《马背上的小红军》 NTUmin(c,S)=
.Thenthereisacostvectorc′suchthatSisacheapestfeasible
setandNTUmin(c′,S)/TUmin(c′,S)≥.
ethatcisacostvectorfor(E,F)suchthat
SisacheapestfeasiblesetandNTUmin(c,S)/TUmin(c,S)=
.Thenthereisacostvectorc′suchthatSisacheapestfeasible
setandNTUmax(c′,S)/NTUmin(c′,S)≥.
4.3Vertex-coverauctions
Incontrasttothecaseofpathauctions,forvertex-coverauc-
tionsthegapbetweenNTUmin(c)andNTUmax(c)(andhence
betweenNTUmax(c)andTUmax(c),andbetweenTUmin(c)
andNTUmin(c))canbeproportionaltothesizeofthegraph.
n≥3,thereisaann-vertexgraph
andacostvectorcforwhichTUmax(c)/NTUmax(c)≥n−2.
erlyinggraphconsistsofan(n−1)-cliqueon
theverticesX
1
,...,X
n−1
,andanextravertexX
0
adjacentto
X
n−1
.Thecostsarec
X
1
=c
X
2
==c
X
n−2
=0,c
X
0
=
c
X
n−1
=ssumethatS={X
0
,X
1
,...,X
n−2
}(this
isthelexicographicallyfirstvertexcoverofcost1).Forthisset
system,theconstraintsin(2)areb
X
i
+b
X
0
≤c
X
n−1
=1for
i=1,...,n−y,wecansatisfyconditions(2)and(3)
bysettingb
X
i
=1fori=1,...,n−2,b
X
0
=,
TUmax(c)≥n−max(c),thereisanadditional
constraintb
X
0
≥1,sothebestwecandoistosetb
X
i
=0for
i=1,...,n−2,b
X
0
=1,whichimpliesNTUmax(c)=1.
CombiningProposition5withLemmas1and3,wederivethe
followingcorollaries.
n≥3,wecanconstructaninstance
ofthevertexcoverproblemonagraphofsizenthatsatisfies
NTUmax(c)/NTUmin(c)≥n−2.
n≥3,wecanconstructaninstance
ofthevertexcoverproblemonagraphofsizenthatsatisfies
NTUmin(c)/TUmin(c)≥n−2.
j+2
i
x
i
j
PP
i
j+2
PP
y
i
ji
xi
x
j
j+1
i
j+2
i
j+1
y
y
i
i
j+2
ie
j
e
j+1
e
i
j+1
PP
Figure3:ProofofTheorem3:constraintsfor
P
i
j
and
P
i
j+2
do
notoverlap
4.4Upperbounds
Itturnsoutthatthelowerboundprovedintheprevioussubsec-
ecisely,thefollowingtheoremshows
thatnotwopaymentboundscandifferbymorethanafactorofn;
moreover,thisisthecasenotjustforthevertexcoverproblem,but
dthegapbetweenTUmax(c)and
TUmin(c).SinceTUmin(c)≤NTUmin(c)≤NTUmax(c)≤
TUmax(c),thisboundappliestoanypairofpaymentbounds.
setsystem(E,F)andanycostvectorc,
wehaveTUmax(c)/TUmin(c)≤n.
wlogthatthewinningsetSconsistsofele-
ments1,...,
1
,...,c
k
bethetruecostsofelementsinS,
letb′
1
,...,b′
k
betheirbidsthatcorrespondtoTUmin(c),andlet
b′′
1
,...,b′′
k
betheirbidsthatcorrespondtoTUmax(c).
Considertheconditions(2)and(3)pickasubset
Lofatmostkinequalitiesin(2)sothatforeachi=1,..关于励志的名言 .,kthere
isatleastoneinequalityinLthatistightforb′
i
.Supposethatthe
jthinequalityinLisoftheformb
i
1
++b
i
t
≤c(T
j
S).For
b′
i
,allinequalitiesinLare,infact,,byadding
upallofthemweobtainkPi=1,...,k
b′
i
≥Pj=1,...,k
c(T
j
S).
Ontheotherhand,alltheseinequalitiesappearincondition(2),so
theymustholdforb′′
i
,i.e.,Pi=1,...,k
b′′
i
≤Pj=1,...,k
c(T
j
S).
Combiningthesetwoinequalities,weobtain
nTUmin(c)≥kTUmin(c)≥TUmax(c).
finallineoftheproofofTheorem2shows
that,infact,theupperboundonTUmax(c)/TUmin(c)canbe
strengthenedtothesizeofthewinningset,atinProposi-
tion5,aswellasinCorollaries1and2,k=n−1,sotheseresults
donotcontradicteachother.
Forpathauctions,thisupperboundcanbeimprovedto2,match-
ingthelowerboundsofSection4.1.
instanceoftheshortestpathproblem,
TUmax(c)≤2TUmin(c).
network(G,s,t),assumewithoutlossofgen-
eralitythatthelexicographically-leastcheapests–tpath,P,inG
is{e
1
,...,e
k
},wheree
1
=(s,v
1
),e
2
=(v
1
,v
2
),...,e
k
=
(v
k−1
,t).Letc
1
,...,c
k
bethetruecostsofe
1
,...,e
k
,andlet
b′=(b′
1
,...,b′
k
)andb′′=(b′′
1
,...,b′′
k
)bebidvectorsthatcor-
respondtoTUmin(c)andTUmax(c),respectively.
Foranyi=1,...,k,thereisaconstraintin(2)thatistightfor
b′
i
withrespecttothebidvectorb′,i.e.,ans–tpathP
i
thatavoids
e
i
andsatisfiesb′(PP
i
)=c(P
i
P).Wecanassumewithoutloss
ofgeneralitythatP
i
coincideswithPuptosomevertexx
i
,then
deviatesfromPtoavoide
i
,andfinallyreturnstoPatavertex
y
i
andcoincideswithPfromthenon(clearly,itmighthappen
thats=x
i
ort=y
i
).Indeed,ifP
i
deviatesfromPmorethan
once,oneofthesedeviationsisnotnecessarytoavoide
i
andcan
bereplacedwiththerespectivesegmentofPwithoutincreasingthe
costofP
i
.Amongallpathsofthisform,let
P
i
betheonewiththe
largestvalueofy
i
,i.e.,the“rightmost”thcorresponds
toaninequalityI
i
oftheformb′
x
i
+1
++b′
y
i
≤c(
P
i
P).
AsintheproofofTheorem2,weconstructasetoftightcon-
straintsLsuchthateveryvariableb′
i
appearsinatleastoneofthese
constraints;however,nowwehavetobemorecarefulaboutthe
tructLinductivelyasfollows.
StartbysettingL={I
1
}.Atthejthstep,supposethatallvari-
ablesupto(butnotincluding)b′
i
j
appearinatleastoneinequality
i
j
toL.
Notethatforanyjwehavey
i
j+1
>y
i
j
.Thisisbecausethe
inequalitiesaddedtoLduringthefirstjstepsdidnotcoverb′
i
j+1
.
i
j+2
>y
i
j+1
,wemustalsohavex
i
j+2
>
y
i
j
:otherwise,
P
i
j+1
wouldnotbethe“rightmost”constraintfor
b′
i
j+1
.Therefore,thevariablesinI
i
j+2
andI
i
j
donotoverlap,and
hencenob′
i
canappearinmorethantwoinequalitiesinL.
NowwefollowtheargumentoftheproofofTheorem2tofinish.
Byaddingupallofthe(tight)inequalitiesinLforb′
i
weobtain
2Pi=1,...,k
b′
i
≥Pj=1,...,k
c(
P
j
P).Ontheotherhand,all
theseinequalitiesappearincondition(2),sotheymustholdfor
b′′
i
,i.e.,Pi=1,...,k
b′′
i
≤Pj=1,...,k
c(
P
j
P),soTUmax(c)≤
2TUmin(c).
ULMECHANISMSFORVER-
TEXCOVER
Recallthatforavertex-coverauctiononagraphG=(V,E),an
allocationruleisanalgorithmthattakesasinputabidb
v
foreach
vertexandreturnsavertexcover
ainedinSec-
tion2,wecancombineamonotoneallocationrulewiththreshold
paymentstoobtainatruthfulauction.
TwonaturalexamplesofmonotoneallocationrulesareA
opt
,i.e.,
thealgorithmthatfindsanoptimalvertexcover,andthegreedy
algorithmA
GR
.However,A
opt
cannotbeguaranteedtorunin
polynomialtimeunlessP=NPandA
GR
hasapproximation
ratiooflogn.
Anotherapproximationalgorithmforvertexcover,whichhasap-
proximationratio2,isthelocalratioalgorithmA
LR
[2,3].This
nedge
e=(u,v),itcomputes=min{b
u
,b
v
}andsetsb
u
=b
u
−,
b
v
=b
v
−.Afteralledgeshavebeenprocessed,A
LR
returns
thesetofvertices{v|b
v
=0}.Itisnothardtocheckthatif
theorderinwhichtheedgesareconsideredisindependentofthe
bids,,wecanuseit
toconstru藏头诗自动生成器 ctatruthfulauctionthatisguaranteedtoselectavertex
coverwhosecostiswithinafactorof2fromtheoptimal.
However,whilethequalityofthesolutionproducedbyA
LR
is
muchbetterthanthatofA
GR
,westillneedtoshowthatitstotal
extsubsection,weboundthefru-
galityratioofA
LR
(and,moregenerally,allalgorithmsthatsatisfy
theconditionoflocaloptimality,definedlater)by2∆,where∆is
proveamatchinglowerbound
showingthatforsomegraphsthefrugalityratioofanytruthfulauc-
tionisatleast∆/2.
5.1Upperbound
Wesaythatanallocationruleislocallyoptimalifwheneverb
v
>Pw∼v
b
w
,atforanysuchrule
thethresholdbidofvsatisfiest
v
≤Pw∼v
b
w
.
orithmsA
opt
,A
GR
,andA
LR
arelocally
optimal.
texcoverauctionMthathasalocally
optimalandmonotoneallocationruleandpayseachagenthis
thresholdbidhasfrugalityratio
NTUmin
(M)≤2∆.
ToproveTheorem4,wefirstshowthatthetotalpaymentof
anylocallyoptimalmechanismdoesnotexceed∆c(V).Wethen
demonstratethatNTUmin(c)≥c(V)/iningthese
tworesults,thetheoremfollows.
eragraphG=(V,E)withmaximumde-
gree∆.LetMbeavertex-coverauctiononGthatsatisfiesthe
ranycostvectorc,thetotalpay-
mentofMsatisfiesp
M
(c)≤∆c(V).
otethatanysuchauctionistruthful,sowecan
assumethateachagent’
Sbethe
localoptimality
p
M
(c)=X
v∈
S
t
v
≤X
v∈
S
X
w∼v
c
w
≤X
w∈V
∆c
w
=∆c(V).
WenowderivealowerboundonTUmax(c);whilenotessential
fortheproofofTheorem4,ithelpsusbuildtheintuitionnecessary
forthatproof.
rtexcoverinstanceG=(V,E)inwhichS
isaminimumvertexcover,TUmax(c,S)≥c(VS)
rtexwwithatleastoneneighbourinS,let
d(w)er
thebidvectorbinwhich,foreachv∈S,b
v
=Pw∼v,w∈S
c
w
S∩
d(w)
,
andsincealledgesbetweenTandSgotoS∩T,theright-
hand-sideisequalto
c(TS)+X
w∈T
c
w
=c(TS)+c(T)=c(VS)=b(S).
Next,weprovealowerboundonNTUmax(c,S);wewillthen
useittoobtainalowerboundonNTUmin(c).
rtexcoverinstanceG=(V,E)inwhichS
isaminimumvertexcover,NTUmax(c,S)≥c(VS)
(S)≥c(VS),bycondition(1)wearedone.
Therefore,fortherestoftheproofweassumethatc(S)
S).Weshowhowtoconstructabidvector(b
e
)
e∈S
thatsatisfies
conditions(1)and(2)suchthatb(S)≥c(VS);clearly,this
impliesNTUmax(c,S)≥c(VS).
Recallthatanetworkflowproblemisdescribedbyadirected
graph=(V
,E
),asourcenodes∈V
,asinknodet∈
V
,andavectorofcapacityconstraintsa
e
,e∈E
.Considera
network(V
,E
)suchthatV
=V∪{s,t},E
=E
1
∪E
2
∪E
3
,
whereE
1
={(s,v)|v∈S},E
2
={(v,w)|v∈S,w∈
VS,(v,w)∈E},E
3
={(w,t)|w∈VS}.SinceSis
avertexcoverforG,noedgeofEcanhavebothofitsendpoints
inVS,andbyconstruction,E
2
containsnoedgeswithboth
ore,thegraph(V,E
2
)isbipartitewithparts
(S,VS).
Setthecapacityconstraintsfore∈E
asfollows:a
(s,v)
=
c
v
,a
(w,t)
=c
w
,a
(v,w)
=+∞forallv∈S,w∈VS.
RecallthatacutisapartitionoftheverticesinV
intotwosets
C
1
andC
2
sothats∈C
1
,t∈C
2
;wedenotesuchacutby
C=(C
1
,C
2
).Abusingnotation,wewritee=(u,v)∈Cif
u∈C
1
,v∈C
2
oru∈C
2
,v∈C
1
,andsaythatsuchanedge
e=(u,v)acityof白居易的诗300首 acutCiscomputed
ascap(C)=P(v,w)∈C
a
(v,w)
.Wehavecap(s,V∪{t})=c(S),
cap({s}∪V,t)=c(VS).
LetC
min
=({s}∪S′∪W′,{t}∪S′′∪W′′)beaminimum
cutin,whereS′,S′′⊆S,W′,W′′⊆
cap(C
min
)≤cap(s,V∪{t})=c(S)<+∞,andanyedgein
E
2
hasinfinitecapacity,noedge(u,v)∈E
2
crossesC
min
.
Considerthenetwork′=(V
′,E
′),whereV
′={s}∪
S′∪W′∪{t},E
′={(u,v)∈E
|u,v∈V
′}.Clearly,
C′=({s}∪S′∪W′,{t})isaminimumcutin′(otherwise,
therewouldexistasmallercutfor).Ascap(C′)=c(W′),we
havec(S′)≥c(W′).
Now,considerthenetwork′′=(V
′′,E
′′),whereV
′′=
{s}∪S′′∪W′′∪{t},E
′′={(u,v)∈E
|u,v∈V
′′}.
Similarly,C′′=({s},S′′∪W′′∪{t})isaminimumcutin′′,
cap(C′′)=c(S′′).Asthesizeofamaximumflowfromsto
tisequaltothecapacityofaminimumcutseparatingsandt,
thereexistsaflowF=(f
e
)
e∈E
′′
ofsizec(S′′).Thisflowhas
tosaturatealledgesbetweensandS′′,i.e.,f
(s,v)
=c
v
forall
v∈S′′.Now,increasethecapacitiesofalledgesbetweensand
S′′to+∞.Inthemodifiednetwork,thecapacityofaminimumcut
(andhencethesizeofamaximumflow)isc(W′′),andamaximum
flowF′=(f′
e
)
e∈E
′′
canbeconstructedbygreedilyaugmenting
F.
Setb
v
=c
v
forallv∈S′,b
v
=f′
(s,v)
forallv∈S′′.AsF′is
constructedbyaugmentingF,wehaveb
v
≥c
v
forallv∈,
condition(1)issatisfied.
Now,letuscheckthatnovertexcoverT⊆Vcanviolatecon-
dition(2).SetT
1
=T∩S′,T
2
=T∩S′′,T
3
=T∩W′,
T
4
=T∩W′′;ourgoalistoshowthatb(S′T
1
)+b(S′′T
2
)≤
c(T
3
)+c(T
4
).Consideralledges(u,v)∈Esuchthatu∈S′T
1
.
If(u,v)∈E
2
thenv∈T
3
(noedgeinE
2
cancrossthecut),andif
u,v∈Sthenv∈T
1
∪T
2
.Hence,T
1
∪T
3
∪S′′isavertexcoverfor
G,andthereforec(T
1
)+c(T
3
)+c(S′′)≥c(S)=c(T
1
)+c(S′
T
1
)+c(S′′).Consequently,c(T
3
)≥c(S′T
1
)=b(S′T
1
).
Now,considertheverticesinS′′T
2
.AnyedgeinE
2
thatstartsin
oneoftheseverticeshastoendinT
4
(thisedgehastobecoveredby
T,anditcannotgoacrossthecut).Therefore,thetotalflowoutof
S′′T
2
isatmostthetotalflowoutofT
4
,i.e.,b(S′′T
2
)≤c(T
4
).
Hence,b(S′T
1
)+b(S′′T
2
)≤c(T
3
)+c(T
4
).
Finally,wederivealowerboundonthepaymentboundthatis
ofinteresttous,namely,NTUmin(c).
rtexcoverinstanceG=(V,E)inwhichS
isaminimumvertexcover,NTUmin(c,S)≥c(VS)
eforcontradictionthatcisacostvectorwith
minimum-costvertexcoverSandNTUmin(c,S)
bbethecorrespondingbidvectorandletc′beanewcostvector
withc′
v
=b
v
forv∈Sandc′
v
=c
v
forv∈ion(2)
guaranteesthatSisanoptimalsolutiontothecostvectorc′.Now
computeabidvectorb′correspondingtoNTUmax(c′,S).We
S’
W’’
S’’
W’
s
t
T
1
T
3
T
2
T
4
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
1111111
1111111
1111111
1111111
1111111
1111111
1111111
1111111
1111111
1111111
1111111
1111111
1111111
1111111
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
00
00
00
00
00
00
00
00
00
00
00
00
00
00
11
11
11
11
11
11
11
11
11
11
11
11
11
11
000
000
000
000
000
000
000
000
000
000
000
000
000
000
111
111
111
111
111
111
111
111
111
111
111
111
111
111
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
1111111
1111111
1111111
1111111
1111111
1111111
1111111
1111111
1111111
1111111
1111111
1111111
1111111
1111111
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
111刘禹锡描写黄河的诗句 1
1111
00
00
00
00
00
00
00
00
00
00
00
00
00
00
11
11
1割席断交告诉我们什么道理 1
11
11
11
11
11
11
11
11
11
11
11
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
111111
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
Figure4:linescorrespondtoedges
inEE
2
claimthatb′
v
=c′
v
foranyv∈,supposethatb′
v
>c′
v
forsomev∈S(b′
v
=c′
v
forv∈Sbyconstruction).Asbsatisfies
conditions(1)–(3),amongtheinequalitiesin(2)thereisonethatis
,b(ST)=c(TS).By
theconstructionofc′,c′(ST)=c′(TS).Nowsinceb′
w
≥c′
w
forallw∈S,b′
v
>c′
v
impliesb′(ST)>c′(ST)=c′(TS).
Butthisviolates(2).Sowenowknowb′=c′.Hence,wehave
NTUmax(c′,S)=Pv∈S
b
v
=NTUmin(c,S)
givingacontradictiontothefactthatNTUmax(c′,S)≥c′(VS)
whichweprovedinLemma7.
AsNTUmin(c,S)satisfiescondition(1),itfollowsthatwe
haveNTUmin(c,S)≥c(S).TogetherwillLemma8,thisimplies
NTUmin(c,S)≥max{c(VS),c(S)}≥c(V)/ed
withLemma5,thiscompletestheproofofTheorem4.
in(c)≤NTUmax(c)≤TUmax(c),
ourboundof2∆extendstothesmallerfrugalityratiosthatwecon-
,
NTUmax
(M)and
TUmax
(M).Itisnotclearwhether
itextendstothelargerfrugalityratio
TUmin
(M).However,the
frugalityratio
TUmin
(M)isnotrealisticbecausethepayment
boundTUmin(c)isinappropriatelylow–weshowinSection6
thatTUmin(c)canbesignificantlysmallerthanthetotalcostofa
cheapestvertexcover.
Extensions
Wecanalsoapplyourresultstomonotonevertex-coveralgorithms
,
wesimplytakethevertexcoverproducedbyanysuchalgorithm
andtransformitintoalocally-optimalone,consideringthevertices
inlexicographicorderandreplacingavertexvwithitsneighbours
wheneverb
v
>Pu∼v
b
u
.Notethatifavertexuhasbeenaddedto
thevertexcoverduringthisprocess,itmeansthatithasaneighbour
whosebidishigherthanb
u
,soafteronepassallverticesinthever-
texcoversatisfyb
v
≤Pu∼v
b
u
.Thisprocedureismonotonein
bids,-
fore,usingitontopofamonotoneallocationrulewithapprox-
imationratio,weobtainamonotonelocally-optimalallocation
rulewithapproximationratio.Combiningitwiththresholdpay-
ments,wegetanauctionwith
NTUmin
≤2∆.Sinceanytruthful
auctionhasamonotoneallocationrule,thisproceduretransforms
anytruthfulmechanismforthevertex-coverproblemintoafrugal
onewhilepreservingtheapproximationratio.
5.2Lowerbound
Inthissubsection,weprovethattheupperboundofTheorem4
ofusesthetechniquesof[9],where
theauthorsproveasimilarresultforshortest-pathauctions.
∆>0andanyn,thereexistagraphG
ofmaximumdegree∆andsizeN>nsuchthatforanytruthful
mechanismMonGwehave
NTUmin
(M)≥∆/2.
and∆,setk=⌈n/2∆⌉.LetGbethegraph
thatconsistsofkblocksB
1
,...,B
k
ofsize2∆each,whereeach
B
i
isacompletebipartitegraphwithpartsL
i
andR
i
,|L
i
|=
|R
i
|=∆.
costvectorx∈X,eachblockB
i
hasonevertexofcost1;all
costvectory∈Y,thereisoneblock
thathastwoverticesofcost1,oneineachpart,allotherblocks
haveonevertexofcost1,y,
|X|=(2∆)k,|Y|=k(2∆)k−1∆nowconstructa
bipartitegraphWwiththevertexsetX∪Yasfollows.
Consideracostvectory∈Ythathastwoverticesofcost1in
B
i
;lettheseverticesbev
l
∈L
i
andv
r
∈R
i
.Bychangingthe
costofeitheroftheseverticesto0,weobtainacostvectorinX.
Letx
l
andx
r
bethecostvectorsobtainedbychangingthecostof
v
l
andv
r
,texcoverchosenbyM(y)must
eithercontainallverticesinL
i
oritmustcontainallverticesinR
i
.
Intheformercase,weputinWanedgefromytox
l
andinthe
lattercaseweputinWanedgefromytox
r
(ifthevertexcover
includesallofB
i
,Wcontainsbothoftheseedges).
ThegraphWhasatleastk(2∆)k−1∆2edges,sotheremust
existanx∈Xofdegreeatleastk∆/
1
,...,y
k∆/2
be
theotherendpointsoftheedgesincidenttox,andforeachi=
1,...,k∆/2,letv
i
bethevertexwhosecostisdifferentunderx
andy
i
;notethatallv
i
aredistinct.
ItisnothardtoseethatNTUmin(x)≤k:thecheapestvertex
covercontainstheall-0partofeachblock,andwecansatisfycon-
ditions(1)–(3)bylettingoneoftheverticesintheall-0partofeach
blocktobid1,whileallothertheverticesinthecheapestsetbid0.
Ontheotherhand,bymonotonicityofMwehavev
i
∈M(x)
fori=1,...,k∆/2(v
i
isinthewinningsetundery
i
,andxis
obtainedfromy
i
bydecreasingthecostofv
i
),andmoreover,the
thresholdbidofeachv
i
isatleast1,sothetotalpaymentofMonx
isatleastk∆/,
NTUmin
(M)≥M(x)/NTUmin(x)≥
∆/2.
erboundofTheorem5canbegeneralised
torandomisedmechanisms,wherearandomisedmechanismiscon-
sideredtobetruthfulifitcanberepresentedasaprobabilitydistri-
case,insteadofchoosing
thevertexx∈Xwiththehighestdegree,weputboth(y,x
l
)
and(y,x
r
)intoW,labeleachedgewiththeprobabilitythatthe
respectivepartoftheblockischosen,andpickx∈Xwiththe
umentcanbefurtherextendedto
amorepermissivedefinitionoftruthfulnessforrandomisedmech-
anisms,butthisdiscussionisbeyondthescopeofthispaper.
TIESOFPAYMENTBOUNDS
Inthissectionweconsiderseveraldesirablepropertiesofpay-
mentboundsandevaluatethefourpaymentboundsproposedin
ticularpropertiesthatwe
areinterestedinareindependenceofthechoiceofS(Section6.3),
monotonicity(Section6.4.1),computationalhardness(Section6.4.2),
andtherelationshipwithotherreasonablebounds,suchasthetotal
costofthecheapestset(Section6.1),orthetotalVCGpayment
(Section6.2).
6.1Comparisonwithtotalcost
Ourfirstrequirementisthatapaymentboundshouldnotbeless
tboundsareusedto
terhaveto
,thepaymenttoeachagentmust
beatleastaslargeashisincurredcosts;itisonlyreasonableto
requirethepaymentboundtosatisfythesamerequirement.
Clearly,NTUmax(c)andNTUmin(c)satisfythisrequirement
duetocondition(1),andsodoesTUmax(c),sinceTUmax(c)≥
NTUmax(c).However,TUmin(c)mple
ofProposition4showsthatforpathauctions,TUmin(c)canbe
er,thereareset
systemsandcostvectorsforwhichTUmin(c)issmallerthanthe
costofthecheapestsetSbyafactorofΩ(n).Consider,forex-
ample,thevertex-coverauctionforthegraphofProposition5with
thecostsc
X
1
==c
X
n−2
=c
X
n−1
=1,c
X
0
=t
ofacheapestvertexcoverisn−2,andthelexicographicallyfirst
vertexcoverofcostn−2is{X
0
,X
1
,...,X
n−2
}.Theconstraints
in(2)areb
X
i
+b
X
0
≤c
X
n−1
=y,wecansatisfycon-
ditions(2)and(3)bysettingb
X
1
==b
X
n−2
=0,b
X
0
=1,
whichmeansthatTUmin(c)≤servationsuggeststhat
thepaymentboundTUmin(c)istoostrongtoberealistic,sinceit
canbesubstantiallylowerthanthecostofthecheapestfeasibleset.
Nevertheless,someofthepositiveresultsthatwereprovedin[16]
forNTUmin(c)gothroughforTUmin(c)icular,
onecanshowthatifthefeasiblesetsarethebasesofamonopoly-
freematroid,then
TUmin
(VCG)=that
TUmin
(VCG)
isatmost1,onemustprovethattheVCGpaymentisatmost
TUmin(c).ThisisshownforNTUmin(c)inthefirstparagraph
oftheproofofTheorem5in[16].Theirargumentdoesnotusecon-
dition(1)atall,soitalsoappliestoTUmin(c).Ontheotherhand,
TUmin
(VCG)≥1since
TUmin
(VCG)≥
NTUmin
(VCG)
and
NTUmin
(VCG)≥1byProposition7of[16](andalsoby
Proposition6below).
6.2ComparisonwithVCGpayments
Anothermeasureofsuitabilityforpaymentboundsisthatthey
shouldnotresultinfrugalityratiosthatarelessthen1forwell-
isindeedthecase,thepayment
boundmaybetooweak,asitbecomestooeasytodesignmecha-
icular,areasonable
requirementisthatapaymentboundshouldnotexceedthetotal
paymentoftheclassicalVCGmechanism.
ThefollowingpropositionshowsthatNTUmax(c),andthere-
forealsoNTUmin(c)andTUmin(c),donotexceedtheVCG
paymentp
VCG
(c).Theproofessentiallyfollowstheargumentof
Proposition7of[16]andcanbefoundinthefullversionofthis
paper[8].
PROPOSITION6.
NTUmax
(VCG)≥1.
Proposition6showsthatnoneofthepaymentboundsTUmin(c),
NTUmin(c)andNTUmax(c)-
ever,thepaymentboundTUmax(c)canbelargerthatthetotal
icular,fortheinstanceinProposition5,the
VCGpaymentissmallerthanTUmax(c)byafactorofn−
havealreadyseenthatTUmax(c)≥n−therhand,
underVCG,thethresholdbidofanyX
i
,i=1,...,n−2,is0:
ifanysuchvertexbidsabove0,itisdeletedfromthewinningset
togetherwithX
0
andreplacedwithX
n−1
.Similarly,thethreshold
bidofX
0
is1,becauseifX
0
bidsabove1,itcanbereplacedwith
X
n−1
.SotheVCGpaymentis1.
Thisresultisnotsurprising:thedefinitionofTUmax(c)im-
plicitlyassumesthereisco-operationbetweentheagents,while
thecomputationofVCGpaymentsdoesnottakeintoaccountany
,co-operationenablestheagents
,VCGisnotgroup-
ggeststhatasapaymentbound,TUmax(c)
maybetooliberal,atleastinacontextwherethereislittleor
sTUmax(c)canbea
goodbenchmarkformeasuringtheperformanceofmechanismsde-
signedforagentsthatcanformcoalitionsormakesidepayments
toeachother,inparticular,group-strategy茄子的拼音 proofmechanisms.
Anothersettinginwhichbounding
TUmax
isstillofsomein-
terestiswhen,fortheunderlyingproblem,theoptimalallocation
case,finding
apolynomial-timecomputablemechanismwithgoodfrugalityra-
tiowithrespecttoTUmax(c)isanon-trivialtask,whilebounding
thefrugalityratiowithrespecttomorechallengingpaymentbounds
couldbetoodiffistratethispoint,comparetheproofs
ofLemma6andLemma7:bothrequiresomeeffort,butthelatter
ismuchmoredifficultthantheformer.
6.3ThechoiceofS
Allpaymentboundsdefinedinthispapercorrespondtothetotal
bidofallelementsinthecheapestfeasibleset,wheretiesarebro-
hisdefinitionensuresthatourpay-
mentboundsarewell-defined,theparticularchoiceofthedraw-
resolutionruleappearsarbitrary,andonemightwonderifourpay-
mentboundsaresufficientlyrobusttobeindependentofthischoice.
ItturnsoutthatisindeedthecaseforNTUmin(c)andNTUmax(c),
seethis,supposethattwofeasiblesetsS
1
andS
2
havethesame
omputationofNTUmin(c,S
1
),allverticesinS
1
S
2
wouldhavetobidtheirtruecost,sinceotherwiseS
2
wouldbe-
comecheaperthanS
1
.Hence,anyb山水田园诗句100首 idvectorforS
1
canonlyhave
b
e
=c
e
fore∈S
1
∩S
2
,andhenceconstitutesavalidbidvector
forS
2
arargumentappliestoNTUmax(c).
However,forTUmin(c)andTUmax(c)thisisnotthecase.
Forexample,considerthesetsystem
E={e
1
,e
2
,e
3
,e
4
,e
5
},
F={S
1
={e
1
,e
2
},S
2
={e
2
,e
3
,e
4
},S
3
={e
4
,e
5
}}
withthecostsc
1
=2,c
2
=c
3
=c
4
=1,c
5
=apest
setsareS
1
andS
2
.NowTUmax(c,S
1
)≤4,asthetotalbidof
theelementsinS
1
cannotexceedthetotalcostofS
3
.Ontheother
hand,TUmax(c,S
2
)≥5,aswecansetb
2
=3,b
3
=0,b
4
=2.
Similarly,TUmin(c,S
1
)=4,becausetheinequalitiesin(2)are
b
1
≤2andb
1
+b
2
≤in(c,S
2
)≤3aswecanset
b
2
=1,b
3
=2,b
4
=0.
6.4NegativeresultsforNTUmin(c)andTUmin(c)
Theresultsin[16]andourvertexcoverresultsareprovedforthe
frugalityratio
NTUmin
.Indeed,itcanbearguedthat
NTUmin
is
the“best”definitionoffrugalityratio,becauseamongallreason-
,onesthatareatleastaslargeasthecost
ofthecheapestfeasibleset),itismostdemandingofthealgorithm.
However,NTUmin(c)isnotalwaystheeasiestorthemostnatural
subsection,wediscussseveral
disadvantagesofNTUmin(c)(andalsoTUmin(c))ascompared
toNTUmax(c)andTUmax(c).
6.4.1Nonmonotonicity
ThefirstproblemwithNTUmin(c)isthatitisnotmonotone
,itmayincreasewhenoneaddsafeasible
settoF.(Itis,however,monotoneinthesensethatalosingagent
cannotbecomeawinnerbyraisinghiscost.)Intuitively,agood
paymentboundshouldsatisfythismonotonicityrequirement,as
addingafeasiblesetincreasesthecompetition,soitshoulddrive
atthisindeedthecaseforNTUmax(c)
andTUmax(c)sinceanewfeasiblesetaddsaconstraintin(2),
thuslimitingthesolutionspacefortherespectivelinearprogram.
afeasiblesettoFcanincreasethe
valueofNTUmin(c)byafactorofΩ(n).
={x,xx,y
1
,...,y
n
,z
1
,...,z
n
}.SetY=
{y
1
,...,y
n
},S=Y∪{x},T
i
=Y{y
i
}∪{z
i
},i=1,...,n,
andsupposethatF={S,T
1
,...,T
n
}.Thecostsarec
x
=0,
c
xx
=0,c
y
i
=0,c
z
i
=1fori=1,...,atSis
′=F∪{T
0
},whereT
0
=Y∪
{xx}.ForF,thebidvectorb
y
1
==b
y
n
=0,b
x
=1
satisfies(1),(2),and(3),soNTUmin(c)≤′,Sisstill
imalsolutionhas
b
x
=0(byconstraintin(2)withT
0
).Condition(3)fory
i
implies
b
x
+b
y
i
=c
z
i
=1,sob
y
i
=1andNTUmin(c)=n.
Forpathauctions,ithasbeenshown[18]thatNTUmin(c)is
,withrespectto
addinganewedge(agent)ratherthananewfeasibleset(ateam
ofexistingagents).
lsoshowthatNTUmin(c)isnon-monotone
case,addinganewfeasiblesetcorresponds
soutthatdeletingasingle
edgecanincreaseNTUmin(c)byafactorofn−2;theconstruc-
tionissimilartothatofProposition5.
6.4.2NP-Hardness
AnotherproblemwithNTUmin(c,S)isthatitisNP-hardto
computeevenifthenumberoffeasiblesetsispolynomialinn.
Again,thisputsitatadisadvantagecomparedtoNTUmax(c,S)
andTUmax(c,S)(seeRemark1).
ingNTUmin(c)isNP-hard,evenwhen
thelexicographically-leastfeasiblesetSisgivenintheinput.
ceEXACTCOVERBY3-SETS(X3C)toourprob-
anceofX3CisgivenbyauniverseG={g
1
,...,g
n
}
andacollectionofsubsetsC
1
,...,C
m
,C
i
⊂G,|C
i
|=3,where
thegoalistodecidewhetheronecancoverGbyn/3ofthesesets.
Observethatifthisisindeedthecase,eachelementofGiscon-
tainedinexactlyonesetofthecover.
eraminimisationproblemPofthefollowing
form:MinimisePi=1,...,n
b
i
underconditions(1)b
i
≥0forall
i=1,...,n;(2)foranyj=1,...,kwehavePb
i
∈S
j
b
i
≤a
j
,
whereS
j
⊆{b
1
,...,b
n
};(3)foreachb
j
,oneoftheconstraints
in(2)suchP,onecanconstructa
setsystemSandavectorofcostscsuchthatNTUmin(c)isthe
optimalsolutiontoP.
structionisstraightforward:thereisanelement
ofcost0foreachb
i
,anelementofcosta
j
foreacha
j
,thefeasible
solutionsare{b
1
,...,b
n
},oranysetobtainedfrom{b
1
,...,b
n
}
byreplacingtheelementsinS
j
bya
j
.
Bythislemma,allwehavetodotoproveTheorem6istoshow
howtosolveX3Cbyusingthesolutiontoaminimisationproblem
h
C
i
,weintroduce4variablesx
i
,x
i
,a
i
,andb
i
.Also,foreach
elementg
j
ofGthereisavariabled
j
.Weusethefollowingsetof
constraints:
•In(1),wehaveconstraintsx
i
≥0,x
i
≥0,a
i
≥0,b
i
≥0,
d
j
≥0foralli=1,...,m,j=1,...,n.
•In(2),foralli=1,...,m,wehavethefollowing5con-
straints:x
i
+x
i
≤1,x
i
+a
i
≤1,x
i
+a
i
≤1,x
i
+b
i
≤1,
x
i
+b
i
≤,forallj=1,...,nwehaveaconstraint
oftheformx
i
1
++x
i
k
+d
j
≤1,whereC
i
1
,...,C
i
k
arethesetsthatcontaing
j
.
Thegoalistominimizez=Pi
(x
i
+x
i
+a
i
+b
i
)+Pj
d
j
.
Observethatforeachj,thereisonlyoneconstraintinvolving
d
j
,sobycondition(3)itmustbetight.
Considerthetwoconstraintsinvolvinga
i
.Oneofthemmustbe
tight,andthereforex
i
+x
i
+a
i
+b
i
≥x
i
+x
i
+a
i
≥,for
anyfeasiblesolutionto(1)–(3)wehavez≥,supposethat
j
=0forj=1,...,,ifC
i
isincludedinthiscover,setx
i
=1,x
i
=a
i
=b
i
=0,otherwise
setx
i
=1,x
i
=a
i
=b
i
=y,allinequalitiesin(2)
aresatisfied(weusethefactthateachelementiscoveredexactly
once),andforeachvariable,oneoftheconstraintsinvolvingitis
signmentresultsinz=m.
Conversely,supposethereisafeasiblesolutionwithz=m.
Aseachaddendoftheformx
i
+x
i
+a
i
+b
i
contributesatleast
1,wehavex
i
+x
i
+a
i
+b
i
=1foralli,d
j
=0forallj.
Wewillnowshowthatforeachi,eitherx
i
=1andx
i
=0,or
x
i
=0andx
i
=sakeofcontradiction,supposethat
x
i
=<1,x
i
=′
a
i
mustbetight,wehavea
i
≥min{1−,1−′}.Similarly,
b
i
≥min{1−,1−′}.Hence,x
i
+x
i
+a
i
+b
i
=1=
+′+2min{1−,1−′}>finishtheproof,notethatfor
eachj=1,...,mwehavex
i
1
++x
i
k
+d
j
=1andd
j
=0,
sothesubsetsthatcorrespondtox
i
=1constituteasetcover.
roofsofProposition7andTheorem6all
constraintsin(1)areoftheformb
e
≥,thesameresults
aretrueforTUmin(c).
rtest-pathauctions,thesizeofFcanbe
r,thereisapolynomial-timeseparation
oracleforconstraintsin(2)(toconstructone,useanyalgorithm
forfindingshortestpaths),soonecancomputeNTUmax(c)and
TUmax(c)therhand,recentlyand
independentlyitwasshown[18]thatcomputingNTUmin(c)for
shortest-pathauctionsisNP-hard.
NCES
[1],
Proceedingsofthe13thAnnualACM-SIAMSymposiumon
DiscreteAlgorithms,pages991–999,2002
[2]-Yehuda,,,,Local
ratio:Aunifi
Memoriam:.,
36(4):422–463,2004
[3],Alocal-ratiotheoremfor
of
DiscreteMathematics,25:27–46,1985
[4],Choice,
8:17–33,1971
[5]scu,Boundingthepaymentofapproximatetruthful
eedingsofthe15thInternational
SymposiumonAlgorithmsandComputation,pages221–233,
2004
[6],Ontheexpectedpaymentof
eedingsofthe5th
ACMConferenceonElectronicCommerce(EC’04),2004
[7],Truecostsofcheaplaborarehardtomeasure:edge
eedingsofthe
6thACMConferenceonElectronicCommerce(EC’05),2005
[8],rg,rg,Frugality
ratiosandimprovedtruthfulmechanismsforvertexcover.
Availablefrom
/abs/cs/0606044,2006
[9],,itz,Frugalityinpath
eedingsofthe15thAnnualACM-SIAM
SymposiumonDiscreteAlgorithms,pages694–702,2004
[10]baum,mitriou,,and
r,ABGP-basedmechanismforlowest-costrouting.
InProceedingsofthe21stSymposiumonPrinciplesof
DistributedComputing,pages173–182,2002
[11],rg,ne,,Competitive
eedingsofthe34thAnnualACM
SymposiumonTheoryofComputation,pages72–81,2002
[12],,,Coalitional
gamesongraphs:corestructures,
Proceedingsofthe4thACMConferenceonElectronic
Commerce(EC’03),2005
[13]rg,ne,,Competitive
eedingsofthe12thAnnual
ACM-SIAMSymposiumonDiscreteAlgorithms,pages
735–744,2001
[14],etrica,
41(4):617–631,1973
[15]ica,,va,,
eedingsofthe6thACM
ConferenceonElectronicCommerce(EC’05),2005
[16],,,BeyondVCG:
eedingsofthe46th
AnnualIEEESymposiumonFoundationsofComputer
Science,pages615–626,2005
[17],Personalcommunication,2006
[18],,Cheaplaborcanbeexpensive,In
Proceedingsofthe18thAnnualACM-SIAMSymposiumon
DiscreteAlgorithms,pages735–744,2007
[19],
Proceedingsofthe31stAnnualACMSymposiumonTheoryof
Computation,pages129–140,1999
[20]an,Towardsgenericlowpayment
eedings
ofthe7thInternationalIEEEConferenceonE-Commerce
Technology,2005
[21],Thepriceoftruth:frugalityintruthful
eedingsof20thInternationalSymposium
onTheoreticalAspectsofComputerScience,2003
[22]y,Counterspeculation,auctions,andcompetitive
lofFinance,16:8–37,1961
更多推荐
Southampton是什么意思thampton在线翻译读音
发布评论