porta是什么意思ta的用法读音典-之路


2023年4月3日发(作者:friendship)

FrugalityRatiosAndImprovedTruthfulMechanismsfor

VertexCover∗

EdithElkind

HebrewUniversityof

Jerusalem,Israel,and

UniversityofSouthampton,

Southampton,SO171BJ,U.K.

LeslieAnnGoldberg

UniversityofLiverpool

LiverpoolL693BX,U.K.

PaulGoldberg

UniversityofLiverpool

LiverpoolL693BX,U.K.

ABSTRACT

Inset-systemauctions,thereareseveraloverlappingteamsofagents,

-

tioneer’-

plesofthissettingincludeshortest-pathauctionsandvertex-cover

ly,Karlin,KempeandTamirintroducedanewdef-

ally,the“frugality

ratio”istheratioofthetotalpaymentofamechanismtoadesired

iocapturestheextenttowhichthemecha-

nismoverpays,relativetoperceivedfaircostinatruthfulauction.

Inthispaper,weproposeanewtruthfulpolynomial-timeauction

thatthesolutionqualityiswithaconstantfactorofoptimaland

thefrugalityratioiswithinaconstantfactorofthebestpossible

worst-casebound;thisisthefirstauctionforthisproblemtohave

er,weshowhowtotransformanytruth-

fulauctionintoafrugalonewhilepreservingtheapproximation

,weconsidertwonaturalmodificationsofthedefinition

ofKarlinetal.,andweanalysethepropertiesoftheresultingpay-

mentbounds,suchasmonotonicity,computationalhardness,and

ythe

relationshipsbetweenthedifferentpaymentbounds,bothforgen-

eralsetsystemsandforspecificset-systemauctions,suchaspath

hesenewdefinitions

intheproofofourmainresultforvertex-coverauctionsviaaboot-

strappingtechnique,whichmaybeofindependentinterest.

CategoriesandSubjectDescriptors

F.2[TheoryofComputation]:AnalysisofAlgorithmsandProb-

lemComplexity;J.4[ComputerApplications]:SocialandBehav-

ioralSciences—economics

GeneralTerms

Algorithms,Economics,Theory

c

CD

=0,c

AC

=c

BD

=aphis2-connectedandthe

r,

thegraphcontainsnoA–DpaththatisdisjointfromABCD,and

hencethefrugalityratioofVCGonthisgraphremainsundefined.

Atthesametime,thereisnomonopoly,thatis,thereisnoven-

ionsforothertypesof

setsystems,therequirementthatthereexistafeasiblesolutiondis-

jointfromtheselectedoneisevenmoresevere:forexample,for

vertex-coverauctions(wherevendorscorrespondtotheverticesof

someunderlyinggraph,andthefeasiblesetsarevertexcovers)the

with

thisproblem,Karlinetal.[16]suggestabetterbenchmark,which

isdefiantity,which

theydenoteby,intuitivelycorrespondstothevalueofacheapest

nthisnewdefinition,theauthorscon-

structnewmechanismsfortheshortestpathproblemandshowthat

theoverpaymentofthesemechanismsiswithinaconstantfactorof

optimal.

1.1Ourresults

VertexcoverauctionsWeproposeatruthfulpolynomial-time

auctionforvertexcoverthatoutputsasolutionwhosecostiswithin

afactorof2ofoptimal,andwhosefrugalityratioisatmost2∆,

where∆isthemaximumdegreeofthegraph(Theorem4).We

complementthisresultbyproving(Theorem5)thatforany∆and

n,therearegraphsofmaximumdegree∆andsize(n)forwhich

anytruthfulmechanismhasfrugalityratioatleast∆/ans

thatthesolutionqualityofourauctioniswithafactorof2ofop-

timalandthefrugalityratioiswithinafactorof4ofthebestpos-

estofourknowledge,

thisisthefirstauctionforthisproblemthatenjoystheseproper-

er,weshowhowtotransformanytruthfulmechanism

forthevertex-coverproblemintoafrugalonewhilepreservingthe

approximationratio.

FrugalityratiosOurvertexcoverresultsnaturallysuggesttwo

modificationsofthedefinitionofin[16].Thesemodifications

canbemadeindependentlyofeachother,resultinginfourdiffer-

entpaymentboundsTUmax,TUmin,NTUmax,andNTUmin,

whereNTUminisequaltotheoriginalpaymentboundofin[16].

AllfourpaymentboundsariseasNashequilibriaofcertaingames

(seethefullversionofthispaper[8]);thedifferencesbetween

themcanbeseenas“thepriceofinitiative”and“thepriceofco-

operation”(seeSection3).Whileourmainresultaboutvertex

coverauctions(Theorem4)iswithrespecttoNTUmin=,we

makeuseofthenewdefinitionsbyfirstcomparingthepaymentof

ourmechanismtoaweakerboundNTUmax,andthenbootstrap-

pingfromthisresulttoobtainthedesiredbound.

Inspiredbythisapplication,weembarkonafurtherstudyof

ultshereareasfollows:

rve(Proposition1)thatthefourpaymentboundsal-

waysobeyaparticularorderthatisindependentofthechoiceof

thesetsystemandthecostvector,namely,TUmin≤NTUmin≤

NTUmax≤ideexamples(Proposition5and

Corollaries1and2)showingthatforthevertexcoverproblemany

twoconsecutiveboundscandifferbyafactorofn−2,wherenis

show(Theorem2)thatthissepara-

tionisalmostbestpossibleforgeneralsetsystemsbyprovingthat

foranysetsystemTUmax/TUmin≤rast,wedemon-

strate(Theorem3)thatforpathauctionsTUmax/TUmin≤2.

Weprovideexamples(Propositions2,3and4)showingthatthis

hisasanargumentforthestudyofvertex-

coverauctions,astheyappeartobemorerepresentativeofthegen-

eralteam-selectionproblemthanthewidelystudiedpathauctions.

(Theorem1)thatforanysetsystem,ifthereisacost

vectorforwhichTUminandNTUmindifferbyafactorof,

thereisanothercostvectorthatseparatesNTUminandNTUmax

bythesamefactorandviceversa;thesameistrueforthepairs

(NTUmin,NTUmax)and(NTUmax,TUmax).Thissymme-

tryisquitesurprising,,TUminandNTUmaxareob-

observationsuggeststhatthefourpaymentboundsshouldbestud-

iedinaunifiedframework;moreover,itleadsustobelievethatthe

bootstrappingtechniqueofTheorem4mayhaveotherapplications.

uatethepaymentboundsintroducedherewithrespect

icular,wenotethatthe

paymentbound=NTUminof[16]exhibitssomecounterintu-

itiveproperties,suchasnonmonotonicitywithrespecttoaddinga

newfeasibleset(Proposition7),andisNP-hardtocompute(Theo-

rem6),whilesomeoftheotherpaymentboundsdonotsufferfrom

nbeseenasanargumentinfavourofusing

weakerbutefficientlycomputableboundsNTUmaxandTUmax.

Relatedwork

Vertex-coverauctionshavebeenstudiedinthepastbyTalwar[21]

andCalinescu[5].Bothofthesepapersarebasedonthedefinition

offrugalityratiousedin[1];asmentionedbefore,thismeansthat

[21]showsthat

thefrugalityratioofVCGisatmost∆.However,sincefinding

thecheapestvertexcoverisanNP-hardproblem,theVCGmech-

first(and,tothebestof

ourknowledge,only)papertoinvestigatepolynomial-timetruthful

mechanismsforvertexcoveris[5].Thispaperstudiesanauction

thatisbasedonthegreedyallocationalgorithm,whichhasanap-

hemainfocusof[5]isthemore

generalsetcoverproblem,theresultsof[5]implyafrugalityratio

of2∆ultsimproveonthoseof[21]as

ourmechanismispolynomial-timecomputable,aswellasonthose

of[5],asourmechanismhasabetterapproximationratio,andwe

proveastrongerboundonthefrugalityratio;moreover,thisbound

alsoappliestothemechanismof[5].

INARIES

Inmostofthispaper,wediscussauctionsforsetsystems.A

setsystemisapair(E,F),whereEisthegroundset,|E|=n,

andFisacollectionoffeasiblesets,

particulartypesofsetsystemsareofinteresttous—shortestpath

systems,inwhichthegroundsetconsistsofalledgesofanetwork,

andthefeasiblesetsarepathsbetweentwospecifiedverticessand

t,andvertexcoversystems,inwhichtheelementsofthegroundset

aretheverticesofagraph,andthefeasiblesetsarevertexcoversof

thisgraph.

Insetsystemauctions,eachelementeofthegroundsetisowned

byanindependentagentandhasanassociatednon-negativecostc

e

.

Thegoalofthecentreistoselect(purchase)

elementeintheselectedsetincursacostofc

e

.Theelementsthat

arenotselectedincurnocosts.

Theauctionproceedsasfollows:allelementsofthegroundset

maketheirbids,thecentreselectsafeasiblesetbasedonthebids

ly,anauctionisdefined

byanallocationruleA:Rn→FandapaymentruleP:Rn→

ocationruletakesasinputavectorofbidsanddecides

mentrulealso

takesasinputavectorofbidsanddecideshowmuchtopaytoeach

,

thepaymenttoeachagentshouldbeatleastashighashisincurred

cost(0foragentsnotintheselectedsetandc

e

foragentsinthe

selectedset)andincentivecompatibility,,each

agent’sdominantstrategyistobidhistruecost.

Anallocationruleismonotoneifanagentcannotincreasehis

ly,foranybid

vectorbandanye∈E,ife∈A(b)thene∈A(b

1

,...,b′

e

,...,b

n

)

foranyb′

e

>b

e

.GivenamonotoneallocationruleAandabid

vectorb,thethresholdbidt

e

ofanagente∈A(b)isthehighest

bidofthisagentthatstillwinstheauction,giventhatthebidsof

ly,t

e

=sup{b′

e

∈R|

e∈A(b

1

,...,b′

e

,...,b

n

)}.Itiswellknown([19,13])

thatanyauctionthathasamonotoneallocationruleandpayseach

agenthisthresholdbidistruthful;conversely,anytruthfulauction

hasamonotoneallocationrule.

TheVCGmechanismisatruthfulmechanismthatmaximises

the“socialwelfare”system

auctions,thissimplymeanspickingacheapestfeasibleset,paying

eachagentintheselectedsethisthresholdbid,andpaying0to

,however,thattheVCGmechanismmaybe

difficulttoimplement,sincefindingacheapestfeasiblesetmaybe

intractable.

IfUisasetofagents,c(U)denotesPw∈U

c

w

.Similarly,b(U)

denotesPw∈U

b

w

.

ITYRATIOS

Westartbyreproducingthedefinitionofthequantityfrom[16,

Definition4].

Let(E,F)beasetsystemandletSbeacheapestfeasibleset

withrespecttothetruecostsc

e

.Then(c,S)isthesolutiontothe

followingoptimisationproblem.

MinimiseB=Pe∈S

b

e

subjectto

(1)b

e

≥c

e

foralle∈E

(2)Pe∈ST

b

e

≤Pe∈TS

c

e

forallT∈F

(3)foreverye∈S,thereisaT

e

∈Fsuchthate∈T

e

andPe

∈ST

e

b

e

′=Pe

∈T

e

S

c

e

Thebound(c,S)canbeseenasanoutcomeofatwo-stage

process,wherefirsteachagente∈Smakesabidb

e

statinghow

muchitwantstobepaid,andthenthecentredecideswhetherto

aviourofbothpartiesisaffectedbythe

ecentre’spointofview,theset

,itmustbeamong

thecheapestfeasiblesetsunderthenewcostsc′

e

=c

e

fore∈S,

c′

e

=b

e

fore∈S(condition(2)).Thereasonforthatisthat

if(2)isviolatedforsomesetT,thecentrewouldpreferTtoS.

Ontheotherhand,noagentwouldagreetoapaymentthatdoes

notcoverhiscosts(condition(1)),andmoreover,eachagenttries

tomaximisehisprofi,none

oftheagentscanincreasehisbidwithoutviolatingcondition(2)

(condition(3)).Thecentrewantstominimisethetotalpayout,so

(c,S)correspondstothebestpossibleoutcomefromthecentre’s

pointofview.

Thisdefinitioncapturesmanyimportantaspectsofourintuition

about‘fair’r,itcanbemodifiedintwoways,

bothofwhicharestillquitenatural,butresultindifferentpayment

bounds.

First,wecanconsidertheworstratherthanthebestpossibleout-

,wecanconsiderthemaximumtotal

paymentthattheagentscanextractbyjointlyselectingtheirbids

subjectto(1),(2),and(3).Suchaboundcorrespondstomaximis-

ingBsubjectto(1),(2),and(3)

istheagentswhomaketheoriginalbids(ratherthanthecentre),

therhand,ina

gameinwhichthecentreproposespaymentstotheagentsinSand

theagentsacceptthemaslongas(1),(2)and(3)aresatisfied,we

wouldbelikelytoobserveatotalpaymentof(c,S).Hence,the

differencebetweenthesetwodefinitionscanbeseenas“theprice

ofinitiative”.

Second,theagentsmaybeabletomakepaymentstoeachother.

Inthiscase,iftheycanextractmoremoneyfromthecentreby

,

condition(1))forsomebidders,theymightbewillingtodoso,as

theagentswhoarepaidbelowtheircostswillbecompensatedby

,

theyhavetosatisfyb

e

≥ultingchangeinpaymentscan

beseenas“thepriceofco-operation”andcorrespondstoreplacing

condition(1)withthefollowingweakercondition(1∗):

b

e

≥0foralle∈E.(1∗)

Byconsideringallpossiblecombinationsofthesemodifications,

weobtainfourdifferentpaymentbounds,namely

•TUmin(c,S),whichisthesolutiontotheoptimisationprob-

lem“MinimiseB”subjectto(1∗),(2),and(3).

•TUmax(c,S),whichisthesolutiontotheoptimisationprob-

lem“MaximiseB”subjectto(1∗),(2),and(3).

•NTUmin(c,S),whichisthesolutiontotheoptimisation

problem“MinimiseB”subjectto(1),(2),and(3).

•NTUmax(c,S),whichisthesolutiontotheoptimisation

problem“MaximiseB”subjectto(1),(2),(3).

TheabbreviationsTUandNTUcorrespond,respectively,totrans-

,theagents’abil-

ity/creteness,

wewilltakeTUmin(c)tobeTUmin(c,S)whereSisthelex-

-

fineTUmax(c),NTUmin(c),NTUmax(c)and(c)similarly,

thoughwewillseeinSection6.3that,infact,NTUmin(c,S)and

NTUmax(c,S)atthe

quantity(c)from[16]isNTUmin(c).

Thesecondmodification(transferableutility)ismoreintuitively

appealinginthecontextofthemaximisationproblem,asbothas-

he

secondmodificationcanbemadewithoutthefirst,theresulting

paymentboundTUmin(c,S)istoostrongtobearealisticbench-

mark,icular,itcanbesmaller

thanthetotalcostofthecheapestfeasiblesetS(seeSection6).

Nevertheless,weprovidethedefinitionaswellassomeresults

aboutTUmin(c,S)inthepaper,bothforcompletenessandbe-

causewebelievethatitmayhelptounderstandwhichproperties

rpos-

sibilitywouldbetointroduceanadditionalconstraintPe∈S

b

e

≥Pe∈S

c

e

inthedefinitionofTUmin(c,S)(notethatthiscondi-

tionholdsautomaticallyforTUmax(c,S),asTUmax(c,S)≥

NTUmax(c,S));however,suchadefinitionwouldhavenodirect

game-theoreticinterpretation,andsomeofourresults(inparticu-

lar,theonesinSection4)wouldnolongerbetrue.

paymentboundsthatarederivedfrommax-

imisationproblems,(i.e.,TUmax(c,S)andNTUmax(c,S)),con-

straintsoftype(3),

TUmax(c,S)andNTUmax(c,S)aresolutionstolinearpro-

grams,andthereforecanbecomputedinpolynomialtimeaslong

aswehaveaseparationoracleforconstraintsin(2).Incontrast,

NTUmin(c,S)canbeNP-hardtocomputeevenifthesizeofFis

polynomial(seeSection6).

Thefirstandthirdinequalitiesinthefollowingobservationfol-

lowfromthefactthatcondition(1∗)isstrictlyweakerthancondi-

tion(1).

PROPOSITION1.

TUmin(c,S)≤NTUmin(c,S)≤

NTUmax(c,S)≤TUmax(c,S).

LetMbeatruthfulmechanismfor(E,F).Letp

M

(c)denote

lity

ratioofMwithrespecttoapaymentboundistheratiobetween

icular,

TUmin

(M)=sup

c

p

M

(c)/TUmin(c),

TUmax

(M)=sup

c

p

M

(c)/TUmax(c),

NTUmin

(M)=sup

c

p

M

(c)/NTUmin(c),

NTUmax

(M)=sup

c

p

M

(c)/NTUmax(c).

Weconcludethissectionbyshowingthatthereexistsetsystems

andrespectivecostvectorsforwhichallfourpaymentboundsare

extsection,wequantifythisdifference,bothfor

generalsetsystems,andforspecifictypesofsetsystems,suchas

pathauctionsorvertexcoverauctions.

ertheshortest-pathauctiononthegraph

canbeverified,usingthereasoningofPropositions2and3below,

thatforthecostvectorc

AB

=c

CD

=2,c

BC

=1,c

AC

=c

BD

=

5,wehave

•TUmax(c)=10(withb

AB

=b

CD

=5,b

BC

=0),

•NTUmax(c)=9(withb

AB

=b

CD

=4,b

BC

=1),

•NTUmin(c)=7(withb

AB

=b

CD

=2,b

BC

=3),

•TUmin(c)=5(withb

AB

=b

CD

=0,b

BC

=5).

INGPAYMENTBOUNDS

4.1Pathauctions

Westartbyshowingthatforpathauctionsanytwoconsecutive

paymentboundscandifferbyatleastafactorof2.

saninstanceoftheshortest-pathprob-

lemforwhichwehaveNTUmax(c)/NTUmin(c)≥2.

nstructionisduetoDavidKempe[17].Con-

siderthegraphofFigure1withtheedgecostsc

AB

=c

BC

=

c

CD

=0,c

AC

=c

BD

=hesecosts,ABCDisthe

qualitiesin(2)areb

AB

+b

BC

≤c

AC

=1,

b

BC

+b

CD

≤c

BD

=ition(3),bothoftheseinequal-

itiesmustbetight(theformeroneistheonlyinequalityinvolv-

ingb

AB

,andthelatteroneistheonly反义词都有什么 inequalityinvolvingb

CD

).

Theinequalitiesin(1)areb

AB

≥0,b

BC

≥0,b

CD

≥,

ifthegoalistomaximiseb

AB

+b

BC

+b

CD

,thebestchoiceis

b

AB

=b

CD

=1,b

BC

=0,soNTUmax(c)=ther

hand,ifthegoalistominimiseb

AB

+b

BC

+b

CD

,oneshouldset

b

AB

=b

CD

=0,b

BC

=1,soNTUmin(c)=1.

saninstanceoftheshortest-pathprob-

lemforwhichwehaveTUmax(c)/NTUmax(c)≥2.

,edge

costsbec

AB

=c

CD

=0,c

BC

=1,c

AC

=c

BD

=

isthelexicographically-leastcheapestpath,sowecanassumethat

S={AB,BC,CD}.Theinequalitiesin(2)arethesameasin

thepreviousexample,andbythesameargumentbothofthemare,

infact,qualitiesin(1)areb

AB

≥0,b

BC

≥1,

b

CD

≥listomaximiseb

AB

+b

BC

+b

CD

.Ifwehave

torespecttheinequalitiesin(1),wehavetosetb

AB

=b

CD

=0,

b

BC

=1,soNTUmax(c)=ise,wecansetb

AB

=

b

CD

=1,b

BC

=0,soTUmax(c)≥2.

saninstanceoftheshortest-pathprob-

lemforwhichwehaveNTUmin(c)/TUmin(c)≥2.

nstructionisalsobasedonthegraphofFigure1.

Theedgecostsarec

AB

=c

CD

=1,c

BC

=0,c

AC

=c

BD

=

thelexicographicallyleastcheapestpath,sowecan

assumethatS={AB,BC,CD}.Again,theinequalitiesin(2)

arethesame,andbothare,infact,qualitiesin(1)

areb

AB

≥1,b

BC

≥0,b

CD

≥listominimiseb

AB

+

b

BC

+b

CD

.Ifwehavetorespecttheinequalitiesin(1),wehaveto

setb

AB

=b

CD

=1,b

BC

=0,soNTUmin(c)=ise,

wecansetb

AB

=b

CD

=0,b

BC

=1,soTUmin(c)≤1.

InSection4.4(Theorem3),weshowthattheseparationresults

inPropositions2,3,and4areoptimal.

4.2Connectionsbetweenseparationresults

Theseparationresultsforpathauctionsareobtainedonthesame

soutthatthisisnot

,wecanprovethefollowingtheorem.

setsystem(E,F),andanyfeasiblesetS,

max

c

TUmax(c,S)

NTUmin(c,S)

,

max

c

NTUmax(c,S)

TUmin(c,S)

,

wherethemaximumisoverallcostvectorscforwhichSisa

cheapestfeasibleset.

Theproofofthetheoremfollowsdirectlyfromthefourlemmas

provedbelow;moreprecisely,thefirstequalityinTheorem1is

obtainedbycombiningLemmas1and2,andthesecondequalityis

eLemma1here;

theproofsofLemmas2–4aresimilarandcanbefoundinthefull

versionofthispaper[8].

ethatcisacostvectorfor(E,F)suchthat

SisacheapestfeasiblesetandTUmax(c,S)/NTUmax(c,S)=

.Thenthereisacostvectorc′suchthatSisacheapestfeasible

setandNTUmax(c′,S)/NTUmin(c′,S)≥.

ethatTUmax(c,S)=XandNTUmax(c,S)=

YwhereX/Y=.AssumewithoutlossofgeneralitythatS

consistsofelements1,...,k,andletb1=(b1

1

,...,b1

k

)andb2=

(b2

1

,...,b2

k

)bethebidvectorsthatcorrespondtoTUmax(c,S)

andNTUmax(c,S),respectively.

Constructthecostvectorc′bysettingc′

i

=c

i

fori∈S,

c′

i

=min{c

i

,b1

i

}fori∈y,Sisacheapestsetunderc′.

Moreover,asthecostsofelementsoutsideofSremainedthesame,

theright-handsidesofallconstraintsin(2)didnotchange,soany

bidvectorthatsatisfies(2)and(3)withrespecttoc,alsosatisfies

themwithrespecttoc′.Wewillconstructtwobidvectorsb3and

b4thatsatisfyconditions(雪人图片 1),(2),and(3)forthecostvectorc′,and

X

X

X

X

X

0

X

1

2

3

X

45

6

Figure2:Graphthatseparatespaymentboundsforvertex

cover,n=7

havePi∈S

b3

i

=X,Pi∈S

b4

i

=ax(c′,S)≥X

andNTUmin(c′,S)≤Y,thisimpliesthelemma.

Wecansetb3

i

=b1

i

:thisbidvectorsatisfiesconditions(2)

and(3)sinceb1does,andwehaveb1

i

≥min{c

i

,b1

i

}=c′

i

,

whichmeansthatb3satisfiescondition(1).Furthermore,wecan

setb4

i

=b2

i

.Again,b4satisfiesconditions(2)and(3)sinceb2

does,andsinceb2satisfiescondition(1),wehaveb2

i

≥c

i

≥c′

i

,

whichmeansthatb4satisfiescondition(1).

ecisacostvectorfor(E,F)suchthatSis

acheapestfeasiblesetandNTUmax(c,S)/NTUmin(c,S)=.

Thenthereisacostvectorc′suchthatSisacheapestfeasibleset

andTUmax(c′,S)/NTUmax(c′,S)≥.

ethatcisacostvectorfor(E,F)suchthat

SisacheapestfeasiblesetandNTUmax(c,S)/红军故事《马背上的小红军》 NTUmin(c,S)=

.Thenthereisacostvectorc′suchthatSisacheapestfeasible

setandNTUmin(c′,S)/TUmin(c′,S)≥.

ethatcisacostvectorfor(E,F)suchthat

SisacheapestfeasiblesetandNTUmin(c,S)/TUmin(c,S)=

.Thenthereisacostvectorc′suchthatSisacheapestfeasible

setandNTUmax(c′,S)/NTUmin(c′,S)≥.

4.3Vertex-coverauctions

Incontrasttothecaseofpathauctions,forvertex-coverauc-

tionsthegapbetweenNTUmin(c)andNTUmax(c)(andhence

betweenNTUmax(c)andTUmax(c),andbetweenTUmin(c)

andNTUmin(c))canbeproportionaltothesizeofthegraph.

n≥3,thereisaann-vertexgraph

andacostvectorcforwhichTUmax(c)/NTUmax(c)≥n−2.

erlyinggraphconsistsofan(n−1)-cliqueon

theverticesX

1

,...,X

n−1

,andanextravertexX

0

adjacentto

X

n−1

.Thecostsarec

X

1

=c

X

2

==c

X

n−2

=0,c

X

0

=

c

X

n−1

=ssumethatS={X

0

,X

1

,...,X

n−2

}(this

isthelexicographicallyfirstvertexcoverofcost1).Forthisset

system,theconstraintsin(2)areb

X

i

+b

X

0

≤c

X

n−1

=1for

i=1,...,n−y,wecansatisfyconditions(2)and(3)

bysettingb

X

i

=1fori=1,...,n−2,b

X

0

=,

TUmax(c)≥n−max(c),thereisanadditional

constraintb

X

0

≥1,sothebestwecandoistosetb

X

i

=0for

i=1,...,n−2,b

X

0

=1,whichimpliesNTUmax(c)=1.

CombiningProposition5withLemmas1and3,wederivethe

followingcorollaries.

n≥3,wecanconstructaninstance

ofthevertexcoverproblemonagraphofsizenthatsatisfies

NTUmax(c)/NTUmin(c)≥n−2.

n≥3,wecanconstructaninstance

ofthevertexcoverproblemonagraphofsizenthatsatisfies

NTUmin(c)/TUmin(c)≥n−2.

j+2

i

x

i

j

PP

i

j+2

PP

y

i

ji

xi

x

j

j+1

i

j+2

i

j+1

y

y

i

i

j+2

ie

j

e

j+1

e

i

j+1

PP

Figure3:ProofofTheorem3:constraintsfor

P

i

j

and

P

i

j+2

do

notoverlap

4.4Upperbounds

Itturnsoutthatthelowerboundprovedintheprevioussubsec-

ecisely,thefollowingtheoremshows

thatnotwopaymentboundscandifferbymorethanafactorofn;

moreover,thisisthecasenotjustforthevertexcoverproblem,but

dthegapbetweenTUmax(c)and

TUmin(c).SinceTUmin(c)≤NTUmin(c)≤NTUmax(c)≤

TUmax(c),thisboundappliestoanypairofpaymentbounds.

setsystem(E,F)andanycostvectorc,

wehaveTUmax(c)/TUmin(c)≤n.

wlogthatthewinningsetSconsistsofele-

ments1,...,

1

,...,c

k

bethetruecostsofelementsinS,

letb′

1

,...,b′

k

betheirbidsthatcorrespondtoTUmin(c),andlet

b′′

1

,...,b′′

k

betheirbidsthatcorrespondtoTUmax(c).

Considertheconditions(2)and(3)pickasubset

Lofatmostkinequalitiesin(2)sothatforeachi=1,..关于励志的名言 .,kthere

isatleastoneinequalityinLthatistightforb′

i

.Supposethatthe

jthinequalityinLisoftheformb

i

1

++b

i

t

≤c(T

j

S).For

b′

i

,allinequalitiesinLare,infact,,byadding

upallofthemweobtainkPi=1,...,k

b′

i

≥Pj=1,...,k

c(T

j

S).

Ontheotherhand,alltheseinequalitiesappearincondition(2),so

theymustholdforb′′

i

,i.e.,Pi=1,...,k

b′′

i

≤Pj=1,...,k

c(T

j

S).

Combiningthesetwoinequalities,weobtain

nTUmin(c)≥kTUmin(c)≥TUmax(c).

finallineoftheproofofTheorem2shows

that,infact,theupperboundonTUmax(c)/TUmin(c)canbe

strengthenedtothesizeofthewinningset,atinProposi-

tion5,aswellasinCorollaries1and2,k=n−1,sotheseresults

donotcontradicteachother.

Forpathauctions,thisupperboundcanbeimprovedto2,match-

ingthelowerboundsofSection4.1.

instanceoftheshortestpathproblem,

TUmax(c)≤2TUmin(c).

network(G,s,t),assumewithoutlossofgen-

eralitythatthelexicographically-leastcheapests–tpath,P,inG

is{e

1

,...,e

k

},wheree

1

=(s,v

1

),e

2

=(v

1

,v

2

),...,e

k

=

(v

k−1

,t).Letc

1

,...,c

k

bethetruecostsofe

1

,...,e

k

,andlet

b′=(b′

1

,...,b′

k

)andb′′=(b′′

1

,...,b′′

k

)bebidvectorsthatcor-

respondtoTUmin(c)andTUmax(c),respectively.

Foranyi=1,...,k,thereisaconstraintin(2)thatistightfor

b′

i

withrespecttothebidvectorb′,i.e.,ans–tpathP

i

thatavoids

e

i

andsatisfiesb′(PP

i

)=c(P

i

P).Wecanassumewithoutloss

ofgeneralitythatP

i

coincideswithPuptosomevertexx

i

,then

deviatesfromPtoavoide

i

,andfinallyreturnstoPatavertex

y

i

andcoincideswithPfromthenon(clearly,itmighthappen

thats=x

i

ort=y

i

).Indeed,ifP

i

deviatesfromPmorethan

once,oneofthesedeviationsisnotnecessarytoavoide

i

andcan

bereplacedwiththerespectivesegmentofPwithoutincreasingthe

costofP

i

.Amongallpathsofthisform,let

P

i

betheonewiththe

largestvalueofy

i

,i.e.,the“rightmost”thcorresponds

toaninequalityI

i

oftheformb′

x

i

+1

++b′

y

i

≤c(

P

i

P).

AsintheproofofTheorem2,weconstructasetoftightcon-

straintsLsuchthateveryvariableb′

i

appearsinatleastoneofthese

constraints;however,nowwehavetobemorecarefulaboutthe

tructLinductivelyasfollows.

StartbysettingL={I

1

}.Atthejthstep,supposethatallvari-

ablesupto(butnotincluding)b′

i

j

appearinatleastoneinequality

i

j

toL.

Notethatforanyjwehavey

i

j+1

>y

i

j

.Thisisbecausethe

inequalitiesaddedtoLduringthefirstjstepsdidnotcoverb′

i

j+1

.

i

j+2

>y

i

j+1

,wemustalsohavex

i

j+2

>

y

i

j

:otherwise,

P

i

j+1

wouldnotbethe“rightmost”constraintfor

b′

i

j+1

.Therefore,thevariablesinI

i

j+2

andI

i

j

donotoverlap,and

hencenob′

i

canappearinmorethantwoinequalitiesinL.

NowwefollowtheargumentoftheproofofTheorem2tofinish.

Byaddingupallofthe(tight)inequalitiesinLforb′

i

weobtain

2Pi=1,...,k

b′

i

≥Pj=1,...,k

c(

P

j

P).Ontheotherhand,all

theseinequalitiesappearincondition(2),sotheymustholdfor

b′′

i

,i.e.,Pi=1,...,k

b′′

i

≤Pj=1,...,k

c(

P

j

P),soTUmax(c)≤

2TUmin(c).

ULMECHANISMSFORVER-

TEXCOVER

Recallthatforavertex-coverauctiononagraphG=(V,E),an

allocationruleisanalgorithmthattakesasinputabidb

v

foreach

vertexandreturnsavertexcover

ainedinSec-

tion2,wecancombineamonotoneallocationrulewiththreshold

paymentstoobtainatruthfulauction.

TwonaturalexamplesofmonotoneallocationrulesareA

opt

,i.e.,

thealgorithmthatfindsanoptimalvertexcover,andthegreedy

algorithmA

GR

.However,A

opt

cannotbeguaranteedtorunin

polynomialtimeunlessP=NPandA

GR

hasapproximation

ratiooflogn.

Anotherapproximationalgorithmforvertexcover,whichhasap-

proximationratio2,isthelocalratioalgorithmA

LR

[2,3].This

nedge

e=(u,v),itcomputes=min{b

u

,b

v

}andsetsb

u

=b

u

−,

b

v

=b

v

−.Afteralledgeshavebeenprocessed,A

LR

returns

thesetofvertices{v|b

v

=0}.Itisnothardtocheckthatif

theorderinwhichtheedgesareconsideredisindependentofthe

bids,,wecanuseit

toconstru藏头诗自动生成器 ctatruthfulauctionthatisguaranteedtoselectavertex

coverwhosecostiswithinafactorof2fromtheoptimal.

However,whilethequalityofthesolutionproducedbyA

LR

is

muchbetterthanthatofA

GR

,westillneedtoshowthatitstotal

extsubsection,weboundthefru-

galityratioofA

LR

(and,moregenerally,allalgorithmsthatsatisfy

theconditionoflocaloptimality,definedlater)by2∆,where∆is

proveamatchinglowerbound

showingthatforsomegraphsthefrugalityratioofanytruthfulauc-

tionisatleast∆/2.

5.1Upperbound

Wesaythatanallocationruleislocallyoptimalifwheneverb

v

>Pw∼v

b

w

,atforanysuchrule

thethresholdbidofvsatisfiest

v

≤Pw∼v

b

w

.

orithmsA

opt

,A

GR

,andA

LR

arelocally

optimal.

texcoverauctionMthathasalocally

optimalandmonotoneallocationruleandpayseachagenthis

thresholdbidhasfrugalityratio

NTUmin

(M)≤2∆.

ToproveTheorem4,wefirstshowthatthetotalpaymentof

anylocallyoptimalmechanismdoesnotexceed∆c(V).Wethen

demonstratethatNTUmin(c)≥c(V)/iningthese

tworesults,thetheoremfollows.

eragraphG=(V,E)withmaximumde-

gree∆.LetMbeavertex-coverauctiononGthatsatisfiesthe

ranycostvectorc,thetotalpay-

mentofMsatisfiesp

M

(c)≤∆c(V).

otethatanysuchauctionistruthful,sowecan

assumethateachagent’

Sbethe

localoptimality

p

M

(c)=X

v∈

S

t

v

≤X

v∈

S

X

w∼v

c

w

≤X

w∈V

∆c

w

=∆c(V).

WenowderivealowerboundonTUmax(c);whilenotessential

fortheproofofTheorem4,ithelpsusbuildtheintuitionnecessary

forthatproof.

rtexcoverinstanceG=(V,E)inwhichS

isaminimumvertexcover,TUmax(c,S)≥c(VS)

rtexwwithatleastoneneighbourinS,let

d(w)er

thebidvectorbinwhich,foreachv∈S,b

v

=Pw∼v,w∈S

c

w

S∩

d(w)

,

andsincealledgesbetweenTandSgotoS∩T,theright-

hand-sideisequalto

c(TS)+X

w∈T

c

w

=c(TS)+c(T)=c(VS)=b(S).

Next,weprovealowerboundonNTUmax(c,S);wewillthen

useittoobtainalowerboundonNTUmin(c).

rtexcoverinstanceG=(V,E)inwhichS

isaminimumvertexcover,NTUmax(c,S)≥c(VS)

(S)≥c(VS),bycondition(1)wearedone.

Therefore,fortherestoftheproofweassumethatc(S)

S).Weshowhowtoconstructabidvector(b

e

)

e∈S

thatsatisfies

conditions(1)and(2)suchthatb(S)≥c(VS);clearly,this

impliesNTUmax(c,S)≥c(VS).

Recallthatanetworkflowproblemisdescribedbyadirected

graph=(V

,E

),asourcenodes∈V

,asinknodet∈

V

,andavectorofcapacityconstraintsa

e

,e∈E

.Considera

network(V

,E

)suchthatV

=V∪{s,t},E

=E

1

∪E

2

∪E

3

,

whereE

1

={(s,v)|v∈S},E

2

={(v,w)|v∈S,w∈

VS,(v,w)∈E},E

3

={(w,t)|w∈VS}.SinceSis

avertexcoverforG,noedgeofEcanhavebothofitsendpoints

inVS,andbyconstruction,E

2

containsnoedgeswithboth

ore,thegraph(V,E

2

)isbipartitewithparts

(S,VS).

Setthecapacityconstraintsfore∈E

asfollows:a

(s,v)

=

c

v

,a

(w,t)

=c

w

,a

(v,w)

=+∞forallv∈S,w∈VS.

RecallthatacutisapartitionoftheverticesinV

intotwosets

C

1

andC

2

sothats∈C

1

,t∈C

2

;wedenotesuchacutby

C=(C

1

,C

2

).Abusingnotation,wewritee=(u,v)∈Cif

u∈C

1

,v∈C

2

oru∈C

2

,v∈C

1

,andsaythatsuchanedge

e=(u,v)acityof白居易的诗300首 acutCiscomputed

ascap(C)=P(v,w)∈C

a

(v,w)

.Wehavecap(s,V∪{t})=c(S),

cap({s}∪V,t)=c(VS).

LetC

min

=({s}∪S′∪W′,{t}∪S′′∪W′′)beaminimum

cutin,whereS′,S′′⊆S,W′,W′′⊆

cap(C

min

)≤cap(s,V∪{t})=c(S)<+∞,andanyedgein

E

2

hasinfinitecapacity,noedge(u,v)∈E

2

crossesC

min

.

Considerthenetwork′=(V

′,E

′),whereV

′={s}∪

S′∪W′∪{t},E

′={(u,v)∈E

|u,v∈V

′}.Clearly,

C′=({s}∪S′∪W′,{t})isaminimumcutin′(otherwise,

therewouldexistasmallercutfor).Ascap(C′)=c(W′),we

havec(S′)≥c(W′).

Now,considerthenetwork′′=(V

′′,E

′′),whereV

′′=

{s}∪S′′∪W′′∪{t},E

′′={(u,v)∈E

|u,v∈V

′′}.

Similarly,C′′=({s},S′′∪W′′∪{t})isaminimumcutin′′,

cap(C′′)=c(S′′).Asthesizeofamaximumflowfromsto

tisequaltothecapacityofaminimumcutseparatingsandt,

thereexistsaflowF=(f

e

)

e∈E

′′

ofsizec(S′′).Thisflowhas

tosaturatealledgesbetweensandS′′,i.e.,f

(s,v)

=c

v

forall

v∈S′′.Now,increasethecapacitiesofalledgesbetweensand

S′′to+∞.Inthemodifiednetwork,thecapacityofaminimumcut

(andhencethesizeofamaximumflow)isc(W′′),andamaximum

flowF′=(f′

e

)

e∈E

′′

canbeconstructedbygreedilyaugmenting

F.

Setb

v

=c

v

forallv∈S′,b

v

=f′

(s,v)

forallv∈S′′.AsF′is

constructedbyaugmentingF,wehaveb

v

≥c

v

forallv∈,

condition(1)issatisfied.

Now,letuscheckthatnovertexcoverT⊆Vcanviolatecon-

dition(2).SetT

1

=T∩S′,T

2

=T∩S′′,T

3

=T∩W′,

T

4

=T∩W′′;ourgoalistoshowthatb(S′T

1

)+b(S′′T

2

)≤

c(T

3

)+c(T

4

).Consideralledges(u,v)∈Esuchthatu∈S′T

1

.

If(u,v)∈E

2

thenv∈T

3

(noedgeinE

2

cancrossthecut),andif

u,v∈Sthenv∈T

1

∪T

2

.Hence,T

1

∪T

3

∪S′′isavertexcoverfor

G,andthereforec(T

1

)+c(T

3

)+c(S′′)≥c(S)=c(T

1

)+c(S′

T

1

)+c(S′′).Consequently,c(T

3

)≥c(S′T

1

)=b(S′T

1

).

Now,considertheverticesinS′′T

2

.AnyedgeinE

2

thatstartsin

oneoftheseverticeshastoendinT

4

(thisedgehastobecoveredby

T,anditcannotgoacrossthecut).Therefore,thetotalflowoutof

S′′T

2

isatmostthetotalflowoutofT

4

,i.e.,b(S′′T

2

)≤c(T

4

).

Hence,b(S′T

1

)+b(S′′T

2

)≤c(T

3

)+c(T

4

).

Finally,wederivealowerboundonthepaymentboundthatis

ofinteresttous,namely,NTUmin(c).

rtexcoverinstanceG=(V,E)inwhichS

isaminimumvertexcover,NTUmin(c,S)≥c(VS)

eforcontradictionthatcisacostvectorwith

minimum-costvertexcoverSandNTUmin(c,S)

bbethecorrespondingbidvectorandletc′beanewcostvector

withc′

v

=b

v

forv∈Sandc′

v

=c

v

forv∈ion(2)

guaranteesthatSisanoptimalsolutiontothecostvectorc′.Now

computeabidvectorb′correspondingtoNTUmax(c′,S).We

S’

W’’

S’’

W’

s

t

T

1

T

3

T

2

T

4

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0000000

1111111

1111111

1111111

1111111

1111111

1111111

1111111

1111111

1111111

1111111

1111111

1111111

1111111

1111111

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

00

00

00

00

00

00

00

00

00

00

00

00

00

00

11

11

11

11

11

11

11

11

11

11

11

11

11

11

000

000

000

000

000

000

000

000

000

000

000

000

000

000

111

111

111

111

111

111

111

111

111

111

111

111

111

111

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

111111

111111

111111

111111

111111

111111

111111

111111

111111

111111

111111

111111

111111

111111

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0000000

1111111

1111111

1111111

1111111

1111111

1111111

1111111

1111111

1111111

1111111

1111111

1111111

1111111

1111111

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

111刘禹锡描写黄河的诗句 1

1111

00

00

00

00

00

00

00

00

00

00

00

00

00

00

11

11

1割席断交告诉我们什么道理 1

11

11

11

11

11

11

11

11

11

11

11

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

111

111

111

111

111

111

111

111

111

111

111

111

111

111

111

111

111

111

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

111111

111111

111111

111111

111111

111111

111111

111111

111111

111111

111111

111111

111111

111111

111111

111111

111111

111111

111111

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

111111

111111

111111

111111

111111

111111

111111

111111

111111

111111

111111

111111

111111

111111

111111

111111

111111

111111

111111

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

111

111

111

111

111

111

111

111

111

111

111

111

111

111

111

111

111

111

111

Figure4:linescorrespondtoedges

inEE

2

claimthatb′

v

=c′

v

foranyv∈,supposethatb′

v

>c′

v

forsomev∈S(b′

v

=c′

v

forv∈Sbyconstruction).Asbsatisfies

conditions(1)–(3),amongtheinequalitiesin(2)thereisonethatis

,b(ST)=c(TS).By

theconstructionofc′,c′(ST)=c′(TS).Nowsinceb′

w

≥c′

w

forallw∈S,b′

v

>c′

v

impliesb′(ST)>c′(ST)=c′(TS).

Butthisviolates(2).Sowenowknowb′=c′.Hence,wehave

NTUmax(c′,S)=Pv∈S

b

v

=NTUmin(c,S)

givingacontradictiontothefactthatNTUmax(c′,S)≥c′(VS)

whichweprovedinLemma7.

AsNTUmin(c,S)satisfiescondition(1),itfollowsthatwe

haveNTUmin(c,S)≥c(S).TogetherwillLemma8,thisimplies

NTUmin(c,S)≥max{c(VS),c(S)}≥c(V)/ed

withLemma5,thiscompletestheproofofTheorem4.

in(c)≤NTUmax(c)≤TUmax(c),

ourboundof2∆extendstothesmallerfrugalityratiosthatwecon-

,

NTUmax

(M)and

TUmax

(M).Itisnotclearwhether

itextendstothelargerfrugalityratio

TUmin

(M).However,the

frugalityratio

TUmin

(M)isnotrealisticbecausethepayment

boundTUmin(c)isinappropriatelylow–weshowinSection6

thatTUmin(c)canbesignificantlysmallerthanthetotalcostofa

cheapestvertexcover.

Extensions

Wecanalsoapplyourresultstomonotonevertex-coveralgorithms

,

wesimplytakethevertexcoverproducedbyanysuchalgorithm

andtransformitintoalocally-optimalone,consideringthevertices

inlexicographicorderandreplacingavertexvwithitsneighbours

wheneverb

v

>Pu∼v

b

u

.Notethatifavertexuhasbeenaddedto

thevertexcoverduringthisprocess,itmeansthatithasaneighbour

whosebidishigherthanb

u

,soafteronepassallverticesinthever-

texcoversatisfyb

v

≤Pu∼v

b

u

.Thisprocedureismonotonein

bids,-

fore,usingitontopofamonotoneallocationrulewithapprox-

imationratio,weobtainamonotonelocally-optimalallocation

rulewithapproximationratio.Combiningitwiththresholdpay-

ments,wegetanauctionwith

NTUmin

≤2∆.Sinceanytruthful

auctionhasamonotoneallocationrule,thisproceduretransforms

anytruthfulmechanismforthevertex-coverproblemintoafrugal

onewhilepreservingtheapproximationratio.

5.2Lowerbound

Inthissubsection,weprovethattheupperboundofTheorem4

ofusesthetechniquesof[9],where

theauthorsproveasimilarresultforshortest-pathauctions.

∆>0andanyn,thereexistagraphG

ofmaximumdegree∆andsizeN>nsuchthatforanytruthful

mechanismMonGwehave

NTUmin

(M)≥∆/2.

and∆,setk=⌈n/2∆⌉.LetGbethegraph

thatconsistsofkblocksB

1

,...,B

k

ofsize2∆each,whereeach

B

i

isacompletebipartitegraphwithpartsL

i

andR

i

,|L

i

|=

|R

i

|=∆.

costvectorx∈X,eachblockB

i

hasonevertexofcost1;all

costvectory∈Y,thereisoneblock

thathastwoverticesofcost1,oneineachpart,allotherblocks

haveonevertexofcost1,y,

|X|=(2∆)k,|Y|=k(2∆)k−1∆nowconstructa

bipartitegraphWwiththevertexsetX∪Yasfollows.

Consideracostvectory∈Ythathastwoverticesofcost1in

B

i

;lettheseverticesbev

l

∈L

i

andv

r

∈R

i

.Bychangingthe

costofeitheroftheseverticesto0,weobtainacostvectorinX.

Letx

l

andx

r

bethecostvectorsobtainedbychangingthecostof

v

l

andv

r

,texcoverchosenbyM(y)must

eithercontainallverticesinL

i

oritmustcontainallverticesinR

i

.

Intheformercase,weputinWanedgefromytox

l

andinthe

lattercaseweputinWanedgefromytox

r

(ifthevertexcover

includesallofB

i

,Wcontainsbothoftheseedges).

ThegraphWhasatleastk(2∆)k−1∆2edges,sotheremust

existanx∈Xofdegreeatleastk∆/

1

,...,y

k∆/2

be

theotherendpointsoftheedgesincidenttox,andforeachi=

1,...,k∆/2,letv

i

bethevertexwhosecostisdifferentunderx

andy

i

;notethatallv

i

aredistinct.

ItisnothardtoseethatNTUmin(x)≤k:thecheapestvertex

covercontainstheall-0partofeachblock,andwecansatisfycon-

ditions(1)–(3)bylettingoneoftheverticesintheall-0partofeach

blocktobid1,whileallothertheverticesinthecheapestsetbid0.

Ontheotherhand,bymonotonicityofMwehavev

i

∈M(x)

fori=1,...,k∆/2(v

i

isinthewinningsetundery

i

,andxis

obtainedfromy

i

bydecreasingthecostofv

i

),andmoreover,the

thresholdbidofeachv

i

isatleast1,sothetotalpaymentofMonx

isatleastk∆/,

NTUmin

(M)≥M(x)/NTUmin(x)≥

∆/2.

erboundofTheorem5canbegeneralised

torandomisedmechanisms,wherearandomisedmechanismiscon-

sideredtobetruthfulifitcanberepresentedasaprobabilitydistri-

case,insteadofchoosing

thevertexx∈Xwiththehighestdegree,weputboth(y,x

l

)

and(y,x

r

)intoW,labeleachedgewiththeprobabilitythatthe

respectivepartoftheblockischosen,andpickx∈Xwiththe

umentcanbefurtherextendedto

amorepermissivedefinitionoftruthfulnessforrandomisedmech-

anisms,butthisdiscussionisbeyondthescopeofthispaper.

TIESOFPAYMENTBOUNDS

Inthissectionweconsiderseveraldesirablepropertiesofpay-

mentboundsandevaluatethefourpaymentboundsproposedin

ticularpropertiesthatwe

areinterestedinareindependenceofthechoiceofS(Section6.3),

monotonicity(Section6.4.1),computationalhardness(Section6.4.2),

andtherelationshipwithotherreasonablebounds,suchasthetotal

costofthecheapestset(Section6.1),orthetotalVCGpayment

(Section6.2).

6.1Comparisonwithtotalcost

Ourfirstrequirementisthatapaymentboundshouldnotbeless

tboundsareusedto

terhaveto

,thepaymenttoeachagentmust

beatleastaslargeashisincurredcosts;itisonlyreasonableto

requirethepaymentboundtosatisfythesamerequirement.

Clearly,NTUmax(c)andNTUmin(c)satisfythisrequirement

duetocondition(1),andsodoesTUmax(c),sinceTUmax(c)≥

NTUmax(c).However,TUmin(c)mple

ofProposition4showsthatforpathauctions,TUmin(c)canbe

er,thereareset

systemsandcostvectorsforwhichTUmin(c)issmallerthanthe

costofthecheapestsetSbyafactorofΩ(n).Consider,forex-

ample,thevertex-coverauctionforthegraphofProposition5with

thecostsc

X

1

==c

X

n−2

=c

X

n−1

=1,c

X

0

=t

ofacheapestvertexcoverisn−2,andthelexicographicallyfirst

vertexcoverofcostn−2is{X

0

,X

1

,...,X

n−2

}.Theconstraints

in(2)areb

X

i

+b

X

0

≤c

X

n−1

=y,wecansatisfycon-

ditions(2)and(3)bysettingb

X

1

==b

X

n−2

=0,b

X

0

=1,

whichmeansthatTUmin(c)≤servationsuggeststhat

thepaymentboundTUmin(c)istoostrongtoberealistic,sinceit

canbesubstantiallylowerthanthecostofthecheapestfeasibleset.

Nevertheless,someofthepositiveresultsthatwereprovedin[16]

forNTUmin(c)gothroughforTUmin(c)icular,

onecanshowthatifthefeasiblesetsarethebasesofamonopoly-

freematroid,then

TUmin

(VCG)=that

TUmin

(VCG)

isatmost1,onemustprovethattheVCGpaymentisatmost

TUmin(c).ThisisshownforNTUmin(c)inthefirstparagraph

oftheproofofTheorem5in[16].Theirargumentdoesnotusecon-

dition(1)atall,soitalsoappliestoTUmin(c).Ontheotherhand,

TUmin

(VCG)≥1since

TUmin

(VCG)≥

NTUmin

(VCG)

and

NTUmin

(VCG)≥1byProposition7of[16](andalsoby

Proposition6below).

6.2ComparisonwithVCGpayments

Anothermeasureofsuitabilityforpaymentboundsisthatthey

shouldnotresultinfrugalityratiosthatarelessthen1forwell-

isindeedthecase,thepayment

boundmaybetooweak,asitbecomestooeasytodesignmecha-

icular,areasonable

requirementisthatapaymentboundshouldnotexceedthetotal

paymentoftheclassicalVCGmechanism.

ThefollowingpropositionshowsthatNTUmax(c),andthere-

forealsoNTUmin(c)andTUmin(c),donotexceedtheVCG

paymentp

VCG

(c).Theproofessentiallyfollowstheargumentof

Proposition7of[16]andcanbefoundinthefullversionofthis

paper[8].

PROPOSITION6.

NTUmax

(VCG)≥1.

Proposition6showsthatnoneofthepaymentboundsTUmin(c),

NTUmin(c)andNTUmax(c)-

ever,thepaymentboundTUmax(c)canbelargerthatthetotal

icular,fortheinstanceinProposition5,the

VCGpaymentissmallerthanTUmax(c)byafactorofn−

havealreadyseenthatTUmax(c)≥n−therhand,

underVCG,thethresholdbidofanyX

i

,i=1,...,n−2,is0:

ifanysuchvertexbidsabove0,itisdeletedfromthewinningset

togetherwithX

0

andreplacedwithX

n−1

.Similarly,thethreshold

bidofX

0

is1,becauseifX

0

bidsabove1,itcanbereplacedwith

X

n−1

.SotheVCGpaymentis1.

Thisresultisnotsurprising:thedefinitionofTUmax(c)im-

plicitlyassumesthereisco-operationbetweentheagents,while

thecomputationofVCGpaymentsdoesnottakeintoaccountany

,co-operationenablestheagents

,VCGisnotgroup-

ggeststhatasapaymentbound,TUmax(c)

maybetooliberal,atleastinacontextwherethereislittleor

sTUmax(c)canbea

goodbenchmarkformeasuringtheperformanceofmechanismsde-

signedforagentsthatcanformcoalitionsormakesidepayments

toeachother,inparticular,group-strategy茄子的拼音 proofmechanisms.

Anothersettinginwhichbounding

TUmax

isstillofsomein-

terestiswhen,fortheunderlyingproblem,theoptimalallocation

case,finding

apolynomial-timecomputablemechanismwithgoodfrugalityra-

tiowithrespecttoTUmax(c)isanon-trivialtask,whilebounding

thefrugalityratiowithrespecttomorechallengingpaymentbounds

couldbetoodiffistratethispoint,comparetheproofs

ofLemma6andLemma7:bothrequiresomeeffort,butthelatter

ismuchmoredifficultthantheformer.

6.3ThechoiceofS

Allpaymentboundsdefinedinthispapercorrespondtothetotal

bidofallelementsinthecheapestfeasibleset,wheretiesarebro-

hisdefinitionensuresthatourpay-

mentboundsarewell-defined,theparticularchoiceofthedraw-

resolutionruleappearsarbitrary,andonemightwonderifourpay-

mentboundsaresufficientlyrobusttobeindependentofthischoice.

ItturnsoutthatisindeedthecaseforNTUmin(c)andNTUmax(c),

<,

seethis,supposethattwofeasiblesetsS

1

andS

2

havethesame

omputationofNTUmin(c,S

1

),allverticesinS

1

S

2

wouldhavetobidtheirtruecost,sinceotherwiseS

2

wouldbe-

comecheaperthanS

1

.Hence,anyb山水田园诗句100首 idvectorforS

1

canonlyhave

b

e

=c

e

fore∈S

1

∩S

2

,andhenceconstitutesavalidbidvector

forS

2

arargumentappliestoNTUmax(c).

However,forTUmin(c)andTUmax(c)thisisnotthecase.

Forexample,considerthesetsystem

E={e

1

,e

2

,e

3

,e

4

,e

5

},

F={S

1

={e

1

,e

2

},S

2

={e

2

,e

3

,e

4

},S

3

={e

4

,e

5

}}

withthecostsc

1

=2,c

2

=c

3

=c

4

=1,c

5

=apest

setsareS

1

andS

2

.NowTUmax(c,S

1

)≤4,asthetotalbidof

theelementsinS

1

cannotexceedthetotalcostofS

3

.Ontheother

hand,TUmax(c,S

2

)≥5,aswecansetb

2

=3,b

3

=0,b

4

=2.

Similarly,TUmin(c,S

1

)=4,becausetheinequalitiesin(2)are

b

1

≤2andb

1

+b

2

≤in(c,S

2

)≤3aswecanset

b

2

=1,b

3

=2,b

4

=0.

6.4NegativeresultsforNTUmin(c)andTUmin(c)

Theresultsin[16]andourvertexcoverresultsareprovedforthe

frugalityratio

NTUmin

.Indeed,itcanbearguedthat

NTUmin

is

the“best”definitionoffrugalityratio,becauseamongallreason-

,onesthatareatleastaslargeasthecost

ofthecheapestfeasibleset),itismostdemandingofthealgorithm.

However,NTUmin(c)isnotalwaystheeasiestorthemostnatural

subsection,wediscussseveral

disadvantagesofNTUmin(c)(andalsoTUmin(c))ascompared

toNTUmax(c)andTUmax(c).

6.4.1Nonmonotonicity

ThefirstproblemwithNTUmin(c)isthatitisnotmonotone

,itmayincreasewhenoneaddsafeasible

settoF.(Itis,however,monotoneinthesensethatalosingagent

cannotbecomeawinnerbyraisinghiscost.)Intuitively,agood

paymentboundshouldsatisfythismonotonicityrequirement,as

addingafeasiblesetincreasesthecompetition,soitshoulddrive

atthisindeedthecaseforNTUmax(c)

andTUmax(c)sinceanewfeasiblesetaddsaconstraintin(2),

thuslimitingthesolutionspacefortherespectivelinearprogram.

afeasiblesettoFcanincreasethe

valueofNTUmin(c)byafactorofΩ(n).

={x,xx,y

1

,...,y

n

,z

1

,...,z

n

}.SetY=

{y

1

,...,y

n

},S=Y∪{x},T

i

=Y{y

i

}∪{z

i

},i=1,...,n,

andsupposethatF={S,T

1

,...,T

n

}.Thecostsarec

x

=0,

c

xx

=0,c

y

i

=0,c

z

i

=1fori=1,...,atSis

′=F∪{T

0

},whereT

0

=Y∪

{xx}.ForF,thebidvectorb

y

1

==b

y

n

=0,b

x

=1

satisfies(1),(2),and(3),soNTUmin(c)≤′,Sisstill

imalsolutionhas

b

x

=0(byconstraintin(2)withT

0

).Condition(3)fory

i

implies

b

x

+b

y

i

=c

z

i

=1,sob

y

i

=1andNTUmin(c)=n.

Forpathauctions,ithasbeenshown[18]thatNTUmin(c)is

,withrespectto

addinganewedge(agent)ratherthananewfeasibleset(ateam

ofexistingagents).

lsoshowthatNTUmin(c)isnon-monotone

case,addinganewfeasiblesetcorresponds

soutthatdeletingasingle

edgecanincreaseNTUmin(c)byafactorofn−2;theconstruc-

tionissimilartothatofProposition5.

6.4.2NP-Hardness

AnotherproblemwithNTUmin(c,S)isthatitisNP-hardto

computeevenifthenumberoffeasiblesetsispolynomialinn.

Again,thisputsitatadisadvantagecomparedtoNTUmax(c,S)

andTUmax(c,S)(seeRemark1).

ingNTUmin(c)isNP-hard,evenwhen

thelexicographically-leastfeasiblesetSisgivenintheinput.

ceEXACTCOVERBY3-SETS(X3C)toourprob-

anceofX3CisgivenbyauniverseG={g

1

,...,g

n

}

andacollectionofsubsetsC

1

,...,C

m

,C

i

⊂G,|C

i

|=3,where

thegoalistodecidewhetheronecancoverGbyn/3ofthesesets.

Observethatifthisisindeedthecase,eachelementofGiscon-

tainedinexactlyonesetofthecover.

eraminimisationproblemPofthefollowing

form:MinimisePi=1,...,n

b

i

underconditions(1)b

i

≥0forall

i=1,...,n;(2)foranyj=1,...,kwehavePb

i

∈S

j

b

i

≤a

j

,

whereS

j

⊆{b

1

,...,b

n

};(3)foreachb

j

,oneoftheconstraints

in(2)suchP,onecanconstructa

setsystemSandavectorofcostscsuchthatNTUmin(c)isthe

optimalsolutiontoP.

structionisstraightforward:thereisanelement

ofcost0foreachb

i

,anelementofcosta

j

foreacha

j

,thefeasible

solutionsare{b

1

,...,b

n

},oranysetobtainedfrom{b

1

,...,b

n

}

byreplacingtheelementsinS

j

bya

j

.

Bythislemma,allwehavetodotoproveTheorem6istoshow

howtosolveX3Cbyusingthesolutiontoaminimisationproblem

h

C

i

,weintroduce4variablesx

i

,x

i

,a

i

,andb

i

.Also,foreach

elementg

j

ofGthereisavariabled

j

.Weusethefollowingsetof

constraints:

•In(1),wehaveconstraintsx

i

≥0,x

i

≥0,a

i

≥0,b

i

≥0,

d

j

≥0foralli=1,...,m,j=1,...,n.

•In(2),foralli=1,...,m,wehavethefollowing5con-

straints:x

i

+x

i

≤1,x

i

+a

i

≤1,x

i

+a

i

≤1,x

i

+b

i

≤1,

x

i

+b

i

≤,forallj=1,...,nwehaveaconstraint

oftheformx

i

1

++x

i

k

+d

j

≤1,whereC

i

1

,...,C

i

k

arethesetsthatcontaing

j

.

Thegoalistominimizez=Pi

(x

i

+x

i

+a

i

+b

i

)+Pj

d

j

.

Observethatforeachj,thereisonlyoneconstraintinvolving

d

j

,sobycondition(3)itmustbetight.

Considerthetwoconstraintsinvolvinga

i

.Oneofthemmustbe

tight,andthereforex

i

+x

i

+a

i

+b

i

≥x

i

+x

i

+a

i

≥,for

anyfeasiblesolutionto(1)–(3)wehavez≥,supposethat

j

=0forj=1,...,,ifC

i

isincludedinthiscover,setx

i

=1,x

i

=a

i

=b

i

=0,otherwise

setx

i

=1,x

i

=a

i

=b

i

=y,allinequalitiesin(2)

aresatisfied(weusethefactthateachelementiscoveredexactly

once),andforeachvariable,oneoftheconstraintsinvolvingitis

signmentresultsinz=m.

Conversely,supposethereisafeasiblesolutionwithz=m.

Aseachaddendoftheformx

i

+x

i

+a

i

+b

i

contributesatleast

1,wehavex

i

+x

i

+a

i

+b

i

=1foralli,d

j

=0forallj.

Wewillnowshowthatforeachi,eitherx

i

=1andx

i

=0,or

x

i

=0andx

i

=sakeofcontradiction,supposethat

x

i

=<1,x

i

=′

a

i

mustbetight,wehavea

i

≥min{1−,1−′}.Similarly,

b

i

≥min{1−,1−′}.Hence,x

i

+x

i

+a

i

+b

i

=1=

+′+2min{1−,1−′}>finishtheproof,notethatfor

eachj=1,...,mwehavex

i

1

++x

i

k

+d

j

=1andd

j

=0,

sothesubsetsthatcorrespondtox

i

=1constituteasetcover.

roofsofProposition7andTheorem6all

constraintsin(1)areoftheformb

e

≥,thesameresults

aretrueforTUmin(c).

rtest-pathauctions,thesizeofFcanbe

r,thereisapolynomial-timeseparation

oracleforconstraintsin(2)(toconstructone,useanyalgorithm

forfindingshortestpaths),soonecancomputeNTUmax(c)and

TUmax(c)therhand,recentlyand

independentlyitwasshown[18]thatcomputingNTUmin(c)for

shortest-pathauctionsisNP-hard.

NCES

[1],

Proceedingsofthe13thAnnualACM-SIAMSymposiumon

DiscreteAlgorithms,pages991–999,2002

[2]-Yehuda,,,,Local

ratio:Aunifi

Memoriam:.,

36(4):422–463,2004

[3],Alocal-ratiotheoremfor

of

DiscreteMathematics,25:27–46,1985

[4],Choice,

8:17–33,1971

[5]scu,Boundingthepaymentofapproximatetruthful

eedingsofthe15thInternational

SymposiumonAlgorithmsandComputation,pages221–233,

2004

[6],Ontheexpectedpaymentof

eedingsofthe5th

ACMConferenceonElectronicCommerce(EC’04),2004

[7],Truecostsofcheaplaborarehardtomeasure:edge

eedingsofthe

6thACMConferenceonElectronicCommerce(EC’05),2005

[8],rg,rg,Frugality

ratiosandimprovedtruthfulmechanismsforvertexcover.

Availablefrom

/abs/cs/0606044,2006

[9],,itz,Frugalityinpath

eedingsofthe15thAnnualACM-SIAM

SymposiumonDiscreteAlgorithms,pages694–702,2004

[10]baum,mitriou,,and

r,ABGP-basedmechanismforlowest-costrouting.

InProceedingsofthe21stSymposiumonPrinciplesof

DistributedComputing,pages173–182,2002

[11],rg,ne,,Competitive

eedingsofthe34thAnnualACM

SymposiumonTheoryofComputation,pages72–81,2002

[12],,,Coalitional

gamesongraphs:corestructures,

Proceedingsofthe4thACMConferenceonElectronic

Commerce(EC’03),2005

[13]rg,ne,,Competitive

eedingsofthe12thAnnual

ACM-SIAMSymposiumonDiscreteAlgorithms,pages

735–744,2001

[14],etrica,

41(4):617–631,1973

[15]ica,,va,,

eedingsofthe6thACM

ConferenceonElectronicCommerce(EC’05),2005

[16],,,BeyondVCG:

eedingsofthe46th

AnnualIEEESymposiumonFoundationsofComputer

Science,pages615–626,2005

[17],Personalcommunication,2006

[18],,Cheaplaborcanbeexpensive,In

Proceedingsofthe18thAnnualACM-SIAMSymposiumon

DiscreteAlgorithms,pages735–744,2007

[19],

Proceedingsofthe31stAnnualACMSymposiumonTheoryof

Computation,pages129–140,1999

[20]an,Towardsgenericlowpayment

eedings

ofthe7thInternationalIEEEConferenceonE-Commerce

Technology,2005

[21],Thepriceoftruth:frugalityintruthful

eedingsof20thInternationalSymposium

onTheoreticalAspectsofComputerScience,2003

[22]y,Counterspeculation,auctions,andcompetitive

lofFinance,16:8–37,1961

更多推荐

Southampton是什么意思thampton在线翻译读音