骑的英文怎么说-蜘蛛侠 英雄归来


2023年4月19日发(作者:中国儿童文学网)Atheoryofoptimal
differentialgeneexpression
WolframLiebermeister
lieberme@
MaxPlanckInstituteforMolecularGenetics,Ihnestr.73,14195Berlin./agklipp
BCB-BerlinCenterforGenomeBasedBioinformatics
Kinetic
Modeling
Group
IntroductionMetabolicsystems
Thelarge-scalestructureofgeneregulationhasbeenintenselystudiedbymeasuringgeneexpressionon
genomicscale.Clusteranalysesandlinearmodelsofgeneexpressiondatahaverevealedgroupsofcoregulated
genesthatoftensharebiologicalfunctions.Conversely,expressiondatahavebeenusedforannotating
genesandreconstructingmetabolicpathways[2],butinapurelyheuristicalway.Herewederivearelation
betweenexpressionandfunctionfromaprincipleofoptimalregulation[5].Theproposedmodelpredictsa
relationbetweenoptimaldifferentialexpression(afterexternalperturbations),function(quantifiedbyresponse
coefficients),andtheregulatorymechanism,asitisfoundinoperons.Asaconsequence,optimalgene
expressionprofilesandregulatorynetworksmayportraythetopologyofthemetabolicnetwork.
Ametabolicsystemischaracterizedby
StoichiometricmatrixNandthekernelmatrixKofstationaryfluxes,fulfillingNK=0
ElasticitiesL:linearinfluencesofindependentmetaboli滇组词 tesonisolatedreactions
Metabolicresponsecoefficients
describethe(linearised)systemicresponsetoparameterperturbations.
JS
,CdescribethelinearinfluenceoffluxchangeofreactionkThecontrolcoefficientsC
ikik
onglobalstationaryfluxJorconcentrationS
ii
SJ
Theoremsofmetaboliccontroltheory[3]constraintsoncontrolcoefficientsC,C
Themodel
y

x
Modelquantities
x:regulatoryvariables(geneexpression,..)
ThesummationandconnectivitytheoremsCL=0andCK=0yield
JS
1pTYT
()(C)Mgeneralpropertiesofoptimalregulationpatternsdx=F
xx
p
AssumethatfitnesscurvaturematrixFandparameter-elasticitiesarediagonal:
xx
T
Iffitnessdependsonlyon:TheoremdxL=0
Fluxes
F
y(x,):“output”variables(metabolites,fluxes,..)
F(x,y):fitnessfunction(reproductionrate,..)
:perturbationparameters(nutrients,temperature,..)
Regulationprofilesfornadjacentreactions(sharingametabolite)
areconfinedtoa(n1)-dimensionalsubspace.
Iffitnessdependsonlyon:TheoremdxK=0
Concentrations
T
regulationvaluesoveranystationaryfluxmodesumtozero.
TheregulatorsxalwaysadaptthemselvestotheperturbationinordertomaximizeafitnessfunctionF.
Optimalresponsetoperturbations
y
F(x,y)
y(x, +d )
y(x, )
Example:asimplemetabolicnetwork
S1
E1
S2
S3
E4E3
S4
E9
S7S5
E5
−0.10.1−0.4
0.1
0.60.6
0.7−0.7
−0.7
0.4
0.4
change of Jchange of Jchange of J
126
E2
1.0
−0.1
1.0
0.7
0.3
−0.4
Localdescriptionbyderivatives:
yy
Responsecoefficients:R=∂y/∂x,R=∂y/∂
x
Fitnessderivatives:F=∂F/∂x,F=∂F/∂y,F=
xyxx
F/∂x,F=F/∂y
2222
yy
DefineregulatoryfitnessG(x,)=F(x,y(x,))
−0.1
E7E6E8
S6S8
0.1
−0.6
0.3
−0.3
0.2
−0.2
−0.6
−1.0
1.0
dx
G(x, )=F(x,y(x, ))
x

Initially,thesystemisinalocallyoptimalstatewhere
y
T
G=F+(R)F=0
xxy
x
yy
T
G=F+(R)FR
xxxxyy
xx
hasnegativeeigenvalues
Smallperturbation(ofy,x,F,...)
y
Findresponsedxtoreachanewoptimalstate
Relatingexpressiontocontrolcoefficients
can. var. of CCcan. var. of expression
x
Condition:G=0beforeandafterperturbation
x
Differentkindsofperturbations
yyyy
xAchievingafixedchangedy=Rddx=F(R)(RF(R))dy
xxxx
T11T1
xxxx
ThescaledexpressionprofileFdxisalinearcombinationofregulatoryprofiles.
xx
Singlevaluexperturbed:Asinglecomponentx
ii
becomesconstrainedtoafixedvaluex+dx
ii
Perturbationsdofydx=G((R)Fdy+(dR)F)
1
1
dxGdx=
(G)
1
xx
xx
ii
yy
TT1

xx
xx
yyy
Comparingsimulatedfluxcontrolcoefficientstogeneexpressiondata(Gaschetal.[1])bycanonicalanalysis.
Thefirstcomponentsfound(shownabove)aresignificantlysimilar.
Superposedresponsetotheperturbationofvariablesandresponsecoefficients.
Modelpredictions
Gene书法学习视频 ralpredictions
Expressionpatternsreflectthemetabolicresponsecoefficients
ReciprocalbehaviourforsmallperturbationsindeletionorRNAiexperiments.
1
Reciprocalresponseinknock-outexperiments
Knock-outexperimentexpressiondatamatrixM
GAL2
(columns:genesknockedout,rows:thesamegenes,measured,log-values)
0.8
0.6
0.4
Relationbetweendifferentialexpressionandfitnesslossafterdeletions.
11
whereDisdiagonalandGModelprediction:M=DG
xxxx
issymmetric.
GAL1
GAL7
GAL100
GAL4
GAL80
GAL3
1
GestimatedfromIdekeretal.[4]knock-outsingalactosepathway
xx
Predictionsformetabolicsystems
assumingexpressionenzymaticactivity
0.2
−0.2
−0.4
−0.6
−0.8
−1
Ifperturbinggeneiaffectstheexpressionof赞美书香气息的诗句 genej,theop-
positeshouldalsohold.
Thepredictedcompensationshouldalsoappearinphylogenetic
gene
profiles.
Ifthefitnessdependsonlyonflux有关中秋节的诗歌或短文 es,andelasticitiesrepresentonlystoichiometry:
correlatedexpressionofneighbourenzymes
Ifthefitnessdependsonlyonconcentrations:
theexpressionprofile,summedoveranystationaryflux,vanishes.
Ifasetofmreactionscontrolsn<mindependentfluxes:
itsexpressionpatternshouldbeconfinedtoan-dimensionalsubspace.
Optimallinearfeedback
Discussion
Theoptimalitypostulateforperturbationsd
canbeimplementedbyalinearfeedback.
Theapproachisto
limited
-Smallperturbations
-Physiologicalconditions(optimalbehaviourisbased“trainingconditions”duringevolution)
Theapproachis:
general
Onlyrequirement:Metabolicresponsecoefficientsmustbedefined
Time-dependentperturbationsofastationarystatecanbetreatedanalogously.
Quantitativetestsaredifficult,because
-Relativelyfewresponsecoefficientscanbemeasured(butsomepropertiesareknown)
-Fitnessfunctionisnotknown
Resultssuggesttousesparselinearmodels(e.g.,ICA)formicroarraydataanalysis.
R

y

y
RR
y
x
x
x
y
F
y
Tx1
R=F(R)F
yxx
x
yy
yy
1xx
Theresultingreactiondx=(1RR)RRdisoptimal
yy
x
Thefeedbackconnectionsarerelatedtotheresponsecoefficients(functionsofaregulators)
Nonlinearsystems(signallingpathwaysetc.)maylocallyimplementthelinearresponse.
Acknowledgement:ThisworkwasfundedbytheEuropeancommission,grantNo.503269
o
m
e
B
a
n
s
G
e
C
e
n
t
e
r
f
o
i
n
r
l
r
References
[1]A.P.Gaschetal.Genomicexpressionprogramsintheresponseofyeastcellstoenvironmentalchanges.MolecularBiologyoftheCell,11:4241–4257,2000.
[2]D.Hanisch,A.Zien,R.Zimmer,andT.Lengauer.Co-clusteringofbiologicalnetwork元日王安石赏析解释 sandgeneexpressiondata.Bi尖组词一年级 oinformatics,18(90001):145S–154,2002.
[3]R.HeinrichandS.Schuster.Theregulationofcellularsystems.Chapman&Hall,1996.
[4]T.Idekeretal.Integratedgenomicandproteomicanalysesofasystematicallyperturbedmetabolicnetwork.Science,292:929–934,2001.
[5]W.Liebermeister,E.Klipp,S.Schuster,andR.Heinrich.Atheoryofoptimaldifferentialgeneexpression.BioSystems,76:261–278,2004.
e
d
B
i
o
i
n
f
o
r
m
a
t
i
c
s
B
e

税前的英文译语怎么说-成长的烦恼第1季


更多推荐

differential是什么意思ferential在线翻译读音