骑的英文怎么说-蜘蛛侠 英雄归来
2023年4月19日发(作者:中国儿童文学网)Atheoryofoptimal
differentialgeneexpression
WolframLiebermeister
lieberme@
MaxPlanckInstituteforMolecularGenetics,Ihnestr.73,14195Berlin./∼agklipp
BCB-BerlinCenterforGenomeBasedBioinformatics
Kinetic
Modeling
Group
IntroductionMetabolicsystems
Thelarge-scalestructureofgeneregulationhasbeenintenselystudiedbymeasuringgeneexpressionon
genomicscale.Clusteranalysesandlinearmodelsofgeneexpressiondatahaverevealedgroupsofcoregulated
genesthatoftensharebiologicalfunctions.Conversely,expressiondatahavebeenusedforannotating
genesandreconstructingmetabolicpathways[2],butinapurelyheuristicalway.Herewederivearelation
betweenexpressionandfunctionfromaprincipleofoptimalregulation[5].Theproposedmodelpredictsa
relationbetweenoptimaldifferentialexpression(afterexternalperturbations),function(quantifiedbyresponse
coefficients),andtheregulatorymechanism,asitisfoundinoperons.Asaconsequence,optimalgene
expressionprofilesandregulatorynetworksmayportraythetopologyofthemetabolicnetwork.
Ametabolicsystemischaracterizedby
•StoichiometricmatrixNandthekernelmatrixKofstationaryfluxes,fulfillingNK=0
•ElasticitiesL:linearinfluencesofindependentmetaboli滇组词 tesonisolatedreactions
Metabolicresponsecoefficients
describethe(linearised)systemicresponsetoparameterperturbations.
JS
,Cdescribethelinearinfluenceoffluxchangeofreactionk•ThecontrolcoefficientsC
ikik
onglobalstationaryfluxJorconcentrationS
ii
SJ
•Theoremsofmetaboliccontroltheory[3]→constraintsoncontrolcoefficientsC,C
Themodel
y
x
Modelquantities
•x:regulatoryvariables(geneexpression,..)
ThesummationandconnectivitytheoremsCL=0andCK=0yield
JS
−1pTYT
()(C)Mgeneralpropertiesofoptimalregulationpatternsdx=−F
xx
p
AssumethatfitnesscurvaturematrixFandparameter-elasticitiesarediagonal:
xx
T
•Iffitnessdependsonlyon:TheoremdxL=0
Fluxes
F
•y(x,):“output”variables(metabolites,fluxes,..)
•F(x,y):fitnessfunction(reproductionrate,..)
•:perturbationparameters(nutrients,temperature,..)
→Regulationprofilesfornadjacentreactions(sharingametabolite)
areconfinedtoa(n−1)-dimensionalsubspace.
•Iffitnessdependsonlyon:TheoremdxK=0
Concentrations
T
→regulationvaluesoveranystationaryfluxmodesumtozero.
TheregulatorsxalwaysadaptthemselvestotheperturbationinordertomaximizeafitnessfunctionF.
Optimalresponsetoperturbations
y
F(x,y)
y(x, +d )
y(x, )
Example:asimplemetabolicnetwork
S1
E1
S2
S3
E4E3
S4
E9
S7S5
E5
−0.10.1−0.4
0.1
0.60.6
0.7−0.7
−0.7
0.4
0.4
change of Jchange of Jchange of J
126
E2
1.0
−0.1
1.0
0.7
0.3
−0.4
Localdescriptionbyderivatives:
yy
•Responsecoefficients:R=∂y/∂x,R=∂y/∂
x
•Fitnessderivatives:F=∂F/∂x,F=∂F/∂y,F=
xyxx
∂F/∂x,F=∂F/∂y
2222
yy
•DefineregulatoryfitnessG(x,)=F(x,y(x,))
−0.1
E7E6E8
S6S8
0.1
−0.6
0.3
−0.3
0.2
−0.2
−0.6
−1.0
1.0
dx
G(x, )=F(x,y(x, ))
x
•
Initially,thesystemisinalocallyoptimalstatewhere
y
T
G=F+(R)F=0
xxy
x
yy
T
G=F+(R)FR
xxxxyy
xx
hasnegativeeigenvalues
•Smallperturbation(ofy,x,F,...)
y
•Findresponsedxtoreachanewoptimalstate
Relatingexpressiontocontrolcoefficients
can. var. of CCcan. var. of expression
x
•Condition:G=0beforeandafterperturbation
x
Differentkindsofperturbations
yyyy
xAchievingafixedchangedy=Rddx=F(R)(RF(R))dy
xxxx
T−1−1T−1
xxxx
ThescaledexpressionprofileFdxisalinearcombinationofregulatoryprofiles.
xx
Singlevaluexperturbed:Asinglecomponentx
ii
becomesconstrainedtoafixedvaluex+dx
ii
Perturbationsdofydx=−G((R)Fdy+(dR)F)
1
−1
dxGdx=
(G)
−1
xx
xx
ii
yy
TT−1
xx
xx
yyy
Comparingsimulatedfluxcontrolcoefficientstogeneexpressiondata(Gaschetal.[1])bycanonicalanalysis.
Thefirstcomponentsfound(shownabove)aresignificantlysimilar.
Superposedresponsetotheperturbationofvariablesandresponsecoefficients.
Modelpredictions
Gene书法学习视频 ralpredictions
•Expressionpatternsreflectthemetabolicresponsecoefficients
•ReciprocalbehaviourforsmallperturbationsindeletionorRNAiexperiments.
1
Reciprocalresponseinknock-outexperiments
•Knock-outexperiment→expressiondatamatrixM
GAL2
(columns:genesknockedout,rows:thesamegenes,measured,log-values)
0.8
0.6
0.4
•Relationbetweendifferentialexpressionandfitnesslossafterdeletions.
1−1−
whereDisdiagonalandG•Modelprediction:M=DG
xxxx
issymmetric.
GAL1
GAL7
GAL100
GAL4
GAL80
GAL3
1−
GestimatedfromIdekeretal.[4]knock-outsingalactosepathway
xx
Predictionsformetabolicsystems
assumingexpression∝enzymaticactivity
0.2
−0.2
−0.4
−0.6
−0.8
−1
Ifperturbinggeneiaffectstheexpressionof赞美书香气息的诗句 genej,theop-
positeshouldalsohold.
•Thepredictedcompensationshouldalsoappearinphylogenetic
gene
profiles.
•Ifthefitnessdependsonlyonflux有关中秋节的诗歌或短文 es,andelasticitiesrepresentonlystoichiometry:
correlatedexpressionofneighbourenzymes
•Ifthefitnessdependsonlyonconcentrations:
theexpressionprofile,summedoveranystationaryflux,vanishes.
•Ifasetofmreactionscontrolsn<mindependentfluxes:
itsexpressionpatternshouldbeconfinedtoan-dimensionalsubspace.
Optimallinearfeedback
Discussion
Theoptimalitypostulateforperturbationsd
canbeimplementedbyalinearfeedback.
•Theapproachisto
limited
-Smallperturbations
-Physiologicalconditions(optimalbehaviourisbased“trainingconditions”duringevolution)
•Theapproachis:
general
Onlyrequirement:Metabolicresponsecoefficientsmustbedefined
•Time-dependentperturbationsofastationarystatecanbetreatedanalogously.
•Quantitativetestsaredifficult,because
-Relativelyfewresponsecoefficientscanbemeasured(butsomepropertiesareknown)
-Fitnessfunctionisnotknown
•Resultssuggesttousesparselinearmodels(e.g.,ICA)formicroarraydataanalysis.
R
y
y
RR
y
x
x
x
y
F
y
Tx−1
R=−F(R)F
yxx
x
yy
yy
−1xx
•Theresultingreactiondx=(1−RR)RRdisoptimal
yy
x
•Thefeedbackconnectionsarerelatedtotheresponsecoefficients(≈functionsofaregulators)
•Nonlinearsystems(signallingpathwaysetc.)maylocallyimplementthelinearresponse.
Acknowledgement:ThisworkwasfundedbytheEuropeancommission,grantNo.503269
o
m
e
B
a
n
s
G
e
C
e
n
t
e
r
f
o
i
n
r
l
r
References
[1]A.P.Gaschetal.Genomicexpressionprogramsintheresponseofyeastcellstoenvironmentalchanges.MolecularBiologyoftheCell,11:4241–4257,2000.
[2]D.Hanisch,A.Zien,R.Zimmer,andT.Lengauer.Co-clusteringofbiologicalnetwork元日王安石赏析解释 sandgeneexpressiondata.Bi尖组词一年级 oinformatics,18(90001):145S–154,2002.
[3]R.HeinrichandS.Schuster.Theregulationofcellularsystems.Chapman&Hall,1996.
[4]T.Idekeretal.Integratedgenomicandproteomicanalysesofasystematicallyperturbedmetabolicnetwork.Science,292:929–934,2001.
[5]W.Liebermeister,E.Klipp,S.Schuster,andR.Heinrich.Atheoryofoptimaldifferentialgeneexpression.BioSystems,76:261–278,2004.
e
d
B
i
o
i
n
f
o
r
m
a
t
i
c
s
B
e
税前的英文译语怎么说-成长的烦恼第1季
更多推荐
differential是什么意思ferential在线翻译读音
发布评论