2024年1月5日发(作者:小学数学试卷及考查点)

初中数学基础知识

考点二、一元二次方程

1、一元二次方程

含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

2、一元二次方程的一般形式

ax2bxc0(a0),它的特征是:等式左边是一个关于未知数x的二次多项式,等式右边是零,其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。

考点三、一元二次方程的解法

1、直接开平方法

利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如(xa)2b的一元二次方程。根据平方根的定义可知,xa是b的平方根,当b0时,xab,xab,当b<0时,方程没有实数根。

2、配方法

配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。配方法的理论根据是完全平方公式a22abb2(ab)2,把公式中的a看做未知数x,并用x代替,则有x22bxb2(xb)2。

3、公式法

公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程ax2bxc0(a0)的求根公式:

bb24ac2x(b4ac0)

2a4、因式分解法

因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

考点四、一元二次方程根的判别式

根的判别式

b24ac叫做一元二次方程ax2bxc0(a0)一元二次方程ax2bxc0(a0)中,的根的判别式,通常用“”来表示,即b24ac

统计初步与概率初步

考点六、确定事件和随机事件

1、确定事件

必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。

不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。

2、随机事件:

第1页

初中数学基础知识

在一定条件下,可能发生也可能不放声的事件,称为随机事件。

考点七、随机事件发生的可能性

一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。

对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小。要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样。所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题。

考点八、概率的意义与表示方法

1、概率的意义

n一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么m这个常数p就叫做事件A的概率。

2、事件和概率的表示方法

一般地,事件用英文大写字母A,B,C,„,表示事件A的概率p,可记为P(A)=P

考点九、确定事件和随机事件的概率之间的关系

1、确定事件概率

(1)当A是必然发生的事件时,P(A)=1

(2)当A是不可能发生的事件时,P(A)=0

2、确定事件和随机事件的概率之间的关系

事件发生的可能性越来越小

0 1概率的值

不可能发生 必然发生

事件发生的可能性越来越大

考点十、古典概型

1、古典概型的定义

某个试验若具有:①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。我们把具有这两个特点的试验称为古典概型。

2、古典概型的概率的求法

一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件mA包含其中的m中结果,那么事件A发生的概率为P(A)=

n考点十一、列表法求概率

1、列表法

用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。

2、列表法的应用场合

当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。

考点十二、树状图法求概率

1、树状图法

就是通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。

2、运用树状图法求概率的条件

当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。

考点十三、利用频率估计概率

第2页

初中数学基础知识

1、利用频率估计概率

在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。

反比例函数

考点五、反比例函数

1、反比例函数的概念

k一般地,函数y(k是常数,k0)叫做反比例函数。反比例函数的解析式也可以写x成ykx1的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。

2、反比例函数的图像

反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

3、反比例函数的性质

k反比例y(k0)

函数

xk的符k>0 k<0

y y

图像

O x O x

①x的取值范围是x0,

y的取值范围是y0;

②当k>0时,函数图像的两个分支分别

在第一、三象限。在每个象限内,y

随x 的增大而减小。

①x的取值范围是x0,

y的取值范围是y0;

②当k<0时,函数图像的两个分支分别

在第二、四象限。在每个象限内,y

随x 的增大而增大。

性质

4、反比例函数解析式的确定

k中,只有一个待定系数,因x此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。

5、反比例函数中反比例系数的几何意义

k如下图,过反比例函数y(k0)图像上任一点P作x轴、y轴的垂线PM,PN,则所x确定及诶是的方法仍是待定系数法。由于在反比例函数y

第3页

初中数学基础知识

得的矩形PMON的面积S=PMPN=yxxy。

yk,xyk,Sk。

x二次函数

考点一、二次函数的概念和图像

1、二次函数的概念

一般地,如果yax2bxc(a,b,c是常数,a0),那么y叫做x 的二次函数。

yax2bxc(a,b,c是常数,a0)叫做二次函数的一般式。

2、二次函数的图像

二次函数的图像是一条关于xb对称的曲线,这条曲线叫抛物线。

2a抛物线的主要特征:

①有开口方向;②有对称轴;③有顶点。

3、二次函数图像的画法

五点法:

(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴

(2)求抛物线yax2bxc与坐标轴的交点:

当抛物线与x轴有两个交点时,描出这两个交点A,B及抛物线与y轴的交点C,再找到点C的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

当抛物线与x轴只有一个交点或无交点时,描出抛物线与y轴的交点C及对称点D。由C、M、D三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A、B,然后顺次连接五点,画出二次函数的图像。

考点二、二次函数的解析式

二次函数的解析式有三种形式:

(1)一般式:yax2bxc(a,b,c是常数,a0)

(2)顶点式:ya(xh)2k(a,h,k是常数,a0)

(3)当抛物线yax2bxc与x轴有交点时,即对应二次好方程ax2bxc0有实根x1和x2存在时,根据二次三项式的分解因式ax2bxca(xx1)(xx2),二次函数yax2bxc可转化为两根式ya(xx1)(xx2)。如果没有交点,则不能这样表示。

考点三、二次函数的最值

如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当b4acb2x时,y最值。

2a4a

第4页

初中数学基础知识

如果自变量的取值范围是x1xx2,那么,首先要看b是否在自变量取值范围2ab4acb2时,y最值;若不在此范围内,则需要x1xx2内,若在此范围内,则当x=2a4a考虑函数在x1xx2范围内的增减性,如果在此范围内,y随x的增大而增大,则当xx2时,2y最大ax2bx2c,当xx1时,y最小ax12bx1c;如果在此范围内,y随x的增大而减2小,则当xx1时,y最大ax12bx1c,当xx2时,y最小ax2bx2c。

考点四、二次函数的性质

1、二次函数的性质

函数

a>0

y

0 x

(1)抛物线开口向上,并向上无限延伸;

bb(2)对称轴是x=,顶点坐标是(,2a2a4acb2);

4a二次函数

yax2bxc(a,b,c是常数,a0)

a<0

y

0 x

(1)抛物线开口向下,并向下无限延伸;

b(2)对称轴是x=,顶点坐标是2ab4acb2(,);

2a4a图像

性质

bb时,y(3)在对称轴的左侧,即当x<时,2a2a随x的增大而减小;在对称轴的右侧,y随x的增大而增大;在对称轴的右bb即当x>时,y随x的增大而增大,侧,即当x>时,y随x的增大而2a2a简记左减右增; 减小,简记左增右减;

bb(4)抛物线有最低点,当x=时,y有(4)抛物线有最高点,当x=时,y2a2a(3)在对称轴的左侧,即当x<最小值,y最小值

4acb2

4a第5页

有最大值,y最大值4acb2

4a

初中数学基础知识

2、二次函数yax2bxc(a,b,c是常数,a0)中,a、b、c的含义:

a表示开口方向:a>0时,抛物线开口向上

a<0时,抛物线开口向下

bb与对称轴有关:对称轴为x=

2a(0,c)

c表示抛物线与y轴的交点坐标:3、二次函数与一元二次方程的关系

一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标。

因此一元二次方程中的b24ac,在二次函数中表示图像与x轴是否有交点。

当>0时,图像与x轴有两个交点;当=0时,图像与x轴有一个交点;当<0时,图像与x轴没有交点。

解直角三角形

考点一、直角三角形的性质

1、直角三角形的两个锐角互余

可表示如下:∠C=90°∠A+∠B=90°

2、在直角三角形中,30°角所对的直角边等于斜边的一半。

∠A=30°

1可表示如下:

BC=AB

2 ∠C=90°

3、直角三角形斜边上的中线等于斜边的一半

∠ACB=90°

1可表示如下:

CD=AB=BD=AD

2 D为AB的中点

4、勾股定理

直角三角形两直角边a,b的平方和等于斜边c的平方,即a2b2c2

5、射影定理

在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项,每条直角边是它们在斜边上的射影和斜边的比例中项

∠ACB=90°

CD2ADBD

AC2ADAB

CD⊥AB

BC2BDAB

6、常用关系式

由三角形面积公式可得:

ABCD=ACBC

考点二、直角三角形的判定

1、有一个角是直角的三角形是直角三角形。

2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

第6页

初中数学基础知识

3、勾股定理的逆定理

如果三角形的三边长a,b,c有关系a2b2c2,那么这个三角形是直角三角形。

考点三、锐角三角函数的概念

1、如图,在△ABC中,∠C=90°

①锐角A的对边与斜边的比叫做∠A的正弦,记为sinA,即sinAA的对边a

斜边c②锐角A的邻边与斜边的比叫做∠A的余弦,记为cosA,即cosAA的邻边b

斜边cA的对边a

A的邻边b③锐角A的对边与邻边的比叫做∠A的正切,记为tanA,即tanA2、锐角三角函数的概念

锐角A的正弦、余弦、正切、余切都叫做∠A的锐角三角函数

3、一些特殊角的三角函数值

三角函数

sinα

30°

1

2 45°

2

2 60°

3

21

2cosα

3

23

32

2tanα 1

3

4、锐角三角函数的增减性

当角度在0°~90°之间变化时,

(1)正弦值随着角度的增大(或减小)而增大(或减小)

(2)余弦值随着角度的增大(或减小)而减小(或增大)

(3)正切值随着角度的增大(或减小)而增大(或减小)

考点四、解直角三角形

1、解直角三角形的概念

在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。

2、解直角三角形的理论依据

在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c

(1)三边之间的关系:a2b2c2(勾股定理)

(2)锐角之间的关系:∠A+∠B=90°

(3)边角之间的关系:

第7页

初中数学基础知识

sinAababab,cosA,tanA,;sinB,cosB,tanB,

ccbcca

考点一、圆的相关概念

1、圆的定义

在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

2、圆的几何表示

以点O为圆心的圆记作“⊙O”,读作“圆O”

考点二、弦、弧等与圆有关的定义

(1)弦

连接圆上任意两点的线段叫做弦。(如图中的AB)

(2)直径

经过圆心的弦叫做直径。(如途中的CD)

直径等于半径的2倍。

(3)半圆

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

(4)弧、优弧、劣弧

圆上任意两点间的部分叫做圆弧,简称弧。

弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。

大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)

考点三、垂径定理及其推论

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

推论2:圆的两条平行弦所夹的弧相等。

垂径定理及其推论可概括为:

过圆心

垂直于弦

直径 平分弦 知二推三

平分弦所对的优弧

平分弦所对的劣弧

考点四、圆的对称性

1、圆的轴对称性

圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

2、圆的中心对称性

圆是以圆心为对称中心的中心对称图形。

考点五、弧、弦、弦心距、圆心角之间的关系定理

1、圆心角

顶点在圆心的角叫做圆心角。

第8页

初中数学基础知识

2、弦心距

从圆心到弦的距离叫做弦心距。

3、弧、弦、弦心距、圆心角之间的关系定理

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。

推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

考点六、圆周角定理及其推论

1、圆周角

顶点在圆上,并且两边都和圆相交的角叫做圆周角。

2、圆周角定理

一条弧所对的圆周角等于它所对的圆心角的一半。

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

考点七、点和圆的位置关系

设⊙O的半径是r,点P到圆心O的距离为d,则有:

dr点P在⊙O外。

考点八、过三点的圆

1、过三点的圆

不在同一直线上的三个点确定一个圆。

2、三角形的外接圆

经过三角形的三个顶点的圆叫做三角形的外接圆。

3、三角形的外心

三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。

4、圆内接四边形性质(四点共圆的判定条件)

圆内接四边形对角互补。

考点九、反证法

先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法。

考点十、直线与圆的位置关系

直线和圆有三种位置关系,具体如下:

(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;

(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,

(3)相离:直线和圆没有公共点时,叫做直线和圆相离。

如果⊙O的半径为r,圆心O到直线l的距离为d,那么:

直线l与⊙O相交d

直线l与⊙O相切d=r;

直线l与⊙O相离d>r;

考点十一、切线的判定和性质

1、切线的判定定理

经过半径的外端并且垂直于这条半径的直线是圆的切线。

2、切线的性质定理

圆的切线垂直于经过切点的半径。

考点十二、三角形的内切圆

1、三角形的内切圆

第9页

初中数学基础知识

与三角形的各边都相切的圆叫做三角形的内切圆。

2、三角形的内心

三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。

考点十四、弧长和扇形面积

1、弧长公式

nRn°的圆心角所对的弧长l的计算公式为l

1802、扇形面积公式

n1S扇R2lR

3602其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长。

3、圆锥的侧面积

1Sa2rra

2其中a是圆锥的母线长,r是圆锥底面圆的半径。

图形的变换

考点三、旋转

1、定义:把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。

2、性质

(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

考点四、中心对称

1、定义

把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2、性质

(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定

如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

4、中心对称图形

把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

考点五、坐标系中对称点的特征

1、关于原点对称的点的特征

两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)

2、关于x轴对称的点的特征

两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)

3、关于y轴对称的点的特征

两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y

第10页

初中数学基础知识

轴的对称点为P’(-x,y)

图形的相似

考点一、比例线段

1、比例线段的相关概念

如果选用同一长度单位量得两条线段a,b的长度分别为m,n,那么就说这两条ambn线段的比是,或写成a:b=m:n

在两条线段的比a:b中,a叫做比的前项,b叫做比的后项。

在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段

若四条a,b,c,d满足或a:b=c:d,那么a,b,c,d叫做组成比例的项,线acbd段a,d叫做比例外项,线段b,c叫做比例内项,线段的d叫做a,b,c的第四比例项。

ab如果作为比例内项的是两条相同的线段,即或a:b=b:c,那么线段b叫做线段a,bcc的比例中项。

2、比例的性质

(1)基本性质

①a:b=c:dad=bc

②a:b=b:cb2ac

(2)合比性质:

acabcd

bdbd(3)等比性质:

acemacema(bdfn0)

bdfnbdfnb考点二、相似三角形

1、相似三角形的概念

对应角相等,对应边成比例的三角形叫做相似三角形。相似用符号“∽”来表示,读作“相似于”。相似三角形对应边的比叫做相似比(或相似系数)。

2、相似三角形的基本定理

平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

用数学语言表述如下:

第11页

初中数学基础知识

∵DE∥BC,∴△ADE∽△ABC

相似三角形的等价关系:

(1)反身性:对于任一△ABC,都有△ABC∽△ABC;

(2)对称性:若△ABC∽△A’B’C’,则△A’B’C’∽△ABC

(3)传递性:若△ABC∽△A’B’C’,并且△A’B’C’∽△A’’B’’C’’,则△ABC∽△A’’B’’C’’。

3、三角形相似的判定

(1)三角形相似的判定方法

①定义法:对应角相等,对应边成比例的两个三角形相似

②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。

④判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。

⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似

(2)直角三角形相似的判定方法

①以上各种判定方法均适用

②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

③垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。

4、相似三角形的性质

(1)相似三角形的对应角相等,对应边成比例

(2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比

(3)相似三角形周长的比等于相似比

(4)相似三角形面积的比等于相似比的平方。

5、相似多边形

(1)如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形。相似多边形对应边的比叫做相似比(或相似系数)

(2)相似多边形的性质

①相似多边形的对应角相等,对应边成比例

②相似多边形周长的比、对应对角线的比都等于相似比

③相似多边形中的对应三角形相似,相似比等于相似多边形的相似比

④相似多边形面积的比等于相似比的平方

6、位似图形

如果两个图形不仅是相似图形,而且每组对应点所在直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,此时的相似比叫做位似比。

性质:每一组对应点和位似中心在同一直线上,它们到位似中心的距离之比都等于位似比。

由一个图形得到它的位似图形的变换叫做位似变换。利用位似变换可以把一个图形放大或缩小。

第12页


更多推荐

叫做,相似,三角形