2023年12月16日发(作者:数学试卷考145分)

2021中考数学必刷题433一、选择题(每小题3分,共30分)1.(3.00分)下列四个数中,绝对值最小的数是(A.﹣2B.0C.1D.7)2.(3.00分)2017年3月5日,十二届全国人大五次会议顺利召开,李克强总理在政府工作报告中指出,2016年国内生产总值达到74.4亿元,比上年增长6.7%,将74.4万亿用科学记数法表示是(A.7.44×104B.7.44×108C.74.4×1012)D.7.44×1013)3.(3.00分)如图,立体图形的俯视图是(A.B.C.D.)4.(3.00分)下列调查中,最适宜采用全面调查方式的是(A.对三门峡全市初中学生每天学习所用时间的调查B.对全国中学生心理健康现状的调查C.对某班学生进行6月5日是“世界环境日”知晓情况的调查D.对三门峡全市初中学生视力情况的调查5.(3.00分)在数学实践活动课中,小辉利用自己制作的一把“直角角尺”测量、计算一些圆的直径,如图,直角角尺,∠AOB=90°,将点O放在圆周上,分别确定OA、OB与圆的交点C、D,读得数据OC=8,OD=9,则此圆的直径约为()A.17B.14C.12D.106.(3.00分)如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的度数为()A.40°B.36°C.50°D.45°7.(3.00分)关于x的一元二次方程足(A.)B.C.a≤且a≠3D.有实数根,则实数a满8.(3.00分)已知x=2是关于x的方程x2﹣(m+4)x+4m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,则△ABC的周长为(A.6)B.8C.10D.8或109.(3.00分)如图,在△OAB中,OA=OB,∠AOB=15°,在△OCD中,OC=OD,∠COD=45°,且点C在边OA上,连接CB,将线段OB绕点O逆时针旋转一定角度得到线段OE,使得DE=CB,则∠BOE的度数为()A.15°B.15°或45°C.45°D.45°或60°10.(3.00分)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.二、填空题(每小题3分,共15分)11.(3.00分)因式分解:9a3b﹣ab=.12.(3.00分)如图,BD是菱形ABCD的对角线,AE⊥BC于点E,交BD于点F,且E为BC的中点,则cos∠BFE的值是.13.(3.00分)如图,抛物线y=ax2﹣4x+c的图象与x轴交于A(﹣3,0)、B(5,0)两点,则a的值为.14.(3.00分)一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的众数是.15.(3.00分)如图,⊙P的半径为5,A、B是圆上任意两点,且AB=6,以AB为边作正方形ABCD(点D、P在直线AB两侧).若AB边绕点P旋转一周,则CD边扫过的面积为.三、解答题(本大题共8个题,共75分)16.(8.00分)先化简:(2x﹣)÷,然后从﹣2≤x≤2中选择一个适当的整数作为x的值代入求值.17.(9.00分)“热爱劳动,勤俭节约”是中华民族的光荣传统,某小学校为了解本校3至6年级的3000名学生帮助父母做家务的情况,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和做家务程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“天天做”、“经常做”、“偶尔做”都统计成帮助父母做家务,那么该校3至6年级学生帮助父母做家务的人数大约是多少?(3)在这次调查中,六年级共有甲、乙、丙、丁四人“天天帮助父母做家务”,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.18.(9.00分)如图,在△ABC中,AB=10,∠BAC=60°,∠B=45°,点D是BC边上一动点,连接AD,以AD为直径作⊙O交边AB、AC于点E、F,连接OE、OF、DE、DF、EF.(1)求的值;(2)当AD运动到什么位置时,四边形OEDF正好是菱形,请说明理由.(3)点D运动过程中,线段EF的最小值为(直接写出结果).19.(9.00分)一轮船在P处测得灯塔A在正北方向,灯塔B在南偏东30°方向,轮船向正东航行了900m,到达Q处,测得A位于北偏西60°方向,B位于南偏西30°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A、B间的距离(结果保留根号).20.(9.00分)如图,在同一直角坐标系中,直线y=x+4与y=﹣3x﹣3相交于A点,分别与x轴交于B、C两点.(1)求△ABC的面积;(2)P、Q分别为直线y=x+4与y=﹣3x﹣3上的点,且P、Q关于原点对称,求P点的坐标.21.(10.00分)某商城销售A,B两种自行车.A型自行车售价为2100元/辆,B型自行车售价为1750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80000元购进A型自行车的数量与用64000元购进B型自行车的数量相等.(1)求每辆A,B两种自行车的进价分别是多少?(2)现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13000元,求获利最大的方案以及最大利润.22.(10.00分)四边形ABCD是边长为4的正方形,点E在边AD所在直线上,连接CE,以CE为边,作正方形CEFG(点D,点F在直线CE的同侧),连接BF.(1)如图1,当点E与点A重合时,请直接写出BF的长;(2)如图2,当点E在线段AD上时,AE=1;①求点F到AD的距离;②求BF的长;(3)若BF=3,请直接写出此时AE的长.23.(11.00分)如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)1.【考点】15:绝对值;18:有理数大小比较.【分析】根据绝对值具有非负性可得绝对值最小的数是0.【解答】解:绝对值最小的数是0,故选:B.【点评】此题主要考查了绝对值,关键是掌握①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.2.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【考点】U2:简单组合体的三视图.【分析】根据几何体的三视图,即可解答.【解答】解:如图所示的立体图形的俯视图是C.故选:C.【点评】本题考查了三视图的知识,掌握所看的位置,注意所有的看到的棱都应表现在视图中.4.【考点】V2:全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A、对三门峡全市初中学生每天学习所用时间的调查,适合抽样调查,故此选项错误;B、对全国中学生心理健康现状的调查,适合抽样调查,故此选项错误;C、对某班学生进行6月5日是“世界环境日”知晓情况的调查,适合全面调查,故此选项正确;D、对三门峡全市初中学生视力情况的调查,适合抽样调查,故此选项错误.故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.【考点】M5:圆周角定理.【分析】连接CD,根据圆周角定理得到CD为圆的直径,根据勾股定理计算即可.【解答】解:连接CD,∵∠AOB=90°,∴CD为圆的直径,CD=故选:C.≈12,【点评】本题考查的是圆周角定理和勾股定理的应用,掌握90°的圆周角所对的弦是直径是解题的关键.6.【考点】L5:平行四边形的性质;PB:翻折变换(折叠问题).【分析】由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.【解答】解:∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°;故选:B.【点评】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键.7.【考点】A1:一元二次方程的定义;AA:根的判别式.【分析】讨论:当a﹣3=0,原方程变形为一元一次方程,有一个实数根;当a﹣3≠0,△=(﹣)2﹣4×(a﹣3)×1≥0,然后综合这两种情况即可.x+1=0,此方程为一元一次方程,有【解答】解:当a﹣3=0,方程变形为﹣一个实数根;当a﹣3≠0,△=(﹣所以a的取值范围为a≤故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.)2﹣4×(a﹣3)×1≥0,解得a≤且a≠3.且a≠3.8.【考点】A3:一元二次方程的解;K6:三角形三边关系;KH:等腰三角形的性质.【分析】先利用一元二次方程解的定义把x=2代入方程x2﹣(m+4)x+4m=0得m=2,则方程化为x2﹣6x+8=0,然后解方程后利用三角形三边的关系确定三角形的三边,最后就是三角形的周长.【解答】解:把x=2代入方程x2﹣(m+4)x+4m=0得4﹣2(m+4)+4m=0,解得m=2,方程化为x2﹣6x+8=0,解得x1=4,x2=2,因为2+2=4,所以三角形三边为4、4、2,所以△ABC的周长为10.故选:C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了三角形三边的关系.9.【考点】KH:等腰三角形的性质;R2:旋转的性质.【分析】分两种情况进行讨论:OE在∠BOD内部,OE\'在∠BOD外部,分别根据全等三角形的性质以及角的和差关系进行计算,即可得到∠BOE的度数.【解答】解:如图,当OE在∠BOD内部时,若∠DOE=∠COB=15°,则由OD=OC,∠DOE=∠COB,OB=OE可得,△ODE≌△OCB,故DE=CB,此时∠BOE=45°﹣15°﹣15°=15°;当OE\'在∠BOD外部时,则由OD=OC,∠DOE\'=∠COB,OB=OE可得,△ODE\'≌△OCB,故DE\'=CB,此时∠BOE\'=45°﹣15°+15°=45°;故选:B.【点评】本题主要考查了旋转的性质,解题时注意:对应点到旋转中心的距离相等,旋转前、后的图形全等.10.【考点】E7:动点问题的函数图象.【分析】分F在线段PD上,以及线段DQ上两种情况,表示出y与x的函数解析式,即可做出判断.【解答】解:当F在PD上运动时,△AEF的面积为y=AE•AD=2x(0≤x≤2),当F在AD上运动时,△AEF的面积为y=AE•AF=x(6﹣x)=﹣x2+3x(2<x≤4),图象为:故选:A.【点评】此题考查了动点问题的函数问题,解决本题的关键是读懂图意,得到相应y与x的函数解析式.二、填空题(每小题3分,共15分)11.【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式后,利用平方差公式分解即可.【解答】解:原式=ab(9a2﹣1)=ab(3a+1)(3a﹣1).故答案为:ab(3a+1)(3a﹣1)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【考点】L8:菱形的性质;T7:解直角三角形.【分析】直接利用菱形的性质结合线段垂直平分线的性质得出AB=BC=AC,进而得出∠BFE=60°,即可得出答案.【解答】解:∵E为BC的中点,AE⊥BC,∴AB=AC,∵四边形ABCD是菱形,∴AB=BC,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ABC=60°,∴∠ABD=∠CBD=30°,∠BAE=30°,∴∠BFE=60°,∴cos∠BFE=.故答案为.【点评】此题主要考查了菱形的性质以及等边三角形的判定与性质,得出△ABC是等边三角形是解题关键.13.【考点】HA:抛物线与x轴的交点.【分析】根据抛物线的对称性易求对称轴x===1,则易求a=2.【解答】解:∵如图,抛物线y=ax2+4x+c的图象与x轴交于A(﹣3,0)、B(5,0)两点,∴该抛物线的对称轴x=解得,a=2.故答案是:2.【点评】本题考查了抛物线与x轴的交点.此题利用抛物线的对称性、对称轴的定义来求a的值.==1,即=1,14.【考点】V8:频数(率)分布直方图;W5:众数.【分析】读懂统计图,利用众数的定义即可得出答案.【解答】解:一名射击运动员连续打靶8次,其中有3次为8环,所以数据的众数是8,故答案为:8.【点评】本题主要考查了众数,解题的关键是读懂统计图,准确的获取信息.15.【考点】I2:点、线、面、体;M2:垂径定理;MO:扇形面积的计算.【分析】连接PD,过点P作PE⊥CD与点E,PE交AB于点F,则CD边扫过的面积为以PD为外圆半径、PE为内圆半径的圆环面积,利用垂径定理即可得出AF=BF,进而可得出DE=CE=3,再根据圆环的面积公式结合勾股定理即可得出CD边扫过的面积.【解答】解:连接PD,过点P作PE⊥CD与点E,PE交AB于点F,则CD边扫过的面积为以PD为外圆半径、PE为内圆半径的圆环面积,如图所示.∵PE⊥CD,AB∥CD,∴PF⊥AB.又∵AB为⊙P的弦,∴AF=BF,∴DE=CE=CD=AB=3,∴CD边扫过的面积为π(PD2﹣PE2)=π•DE2=9π.故答案为:9π.【点评】本题考查了垂径定理、勾股定理、平行线的性质以及圆环的面积公式,结合AB边的旋转,找出CD边旋转过程中扫过区域的形状是关键.三、解答题(本大题共8个题,共75分)16.【考点】6D:分式的化简求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后在﹣2≤x≤2中选择一个使得原分式有意义的整数值代入化简后的式子即可解答本题.【解答】解:(2x﹣===,.)÷当x=1时,原式=【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.17.【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图;X6:列表法与树状图法.【分析】(1)根据条形统计图中的数据,找出中位数即可;(2)根据扇形统计图找出的百分比,乘以3000即可得到结果;(3)画树状图得出所有等可能的情况数,找出恰好是甲与乙的情况,即可确定出所求概率.【解答】解:(1)四个年级被抽出的人数由小到大排列为30,45,55,70,∴中位数为50;(2)根据题意得:3000×(1﹣25%)=2250人,则该校帮助父母做家务的学生大约有2250人;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是甲与乙的情况有2种,则P==.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.18.【考点】MR:圆的综合题.【分析】(1)根据已知条件即可得到结论;(2)根据角平分线的性质得到DE=DF,有AD是⊙O的直径,得到∠DEA=90°,由三角形的内角和得到∠EDA=60°,推出△OED是等边三角形,得到ED=OE,根据菱形的判定定理即可得到结论;(3)由垂线的性质可知,当AD⊥BC时,直径AD最短,即⊙O最小,即EF由最小值,连接OE,OF,过O作OH⊥EF于H,解直角三角形即可得到结论.【解答】解:(1)∵∠BAC=60°,∴∠EOF=120°,∵OE=OF,∴=;(2)当AD平分∠BAC时,四边形OEDF是菱形,理由:∵AD平分∠BAC,∴DE=DF,∠BAD=30°,∵AD是⊙O的直径,∴∠DEA=90°,∴∠EDA=60°,∵OE=OD,∴△OED是等边三角形,即ED=OE,∴OE=OF=DE=DF,∴四边形OEDF是菱形;(3)由垂线的性质可知,当AD⊥BC时,直径AD最短,即⊙O最小,即EF有最小值,如图,过O作OH⊥EF于H,在Rt△ADB中,∵∠ABC=45°,AB=10∴AD=BD=10,即此时,⊙O的直径为10,∵∠EOH=∠EOH=∠BAC=60°,∴EH=OE•sin∠EOH=5×由垂径定理可得EF=2EH=5线段EF的最小值为5故答案为:5.,=.,,【点评】本题考查了菱形的判定,垂径定理,圆周角定理,解直角三角形,关键是根据运动变化,找出满足条件的最小圆.19.【考点】TB:解直角三角形的应用﹣方向角问题.【分析】(1)由题意知∠QPB=60°、∠PQB=60°,从而得△BPQ是等边三角形,据此可得答案;(2)由(1)知PQ=BQ=900m,从而得AQ=﹣60°﹣30°=90°知AB=【解答】解:(1)相等,由图知∠QPB=60°、∠PQB=60°,∴△BPQ是等边三角形,∴BQ=PQ;(2)由(1)知PQ=BQ=900m,在Rt△APQ中,AQ===600,=300.=600,根据∠AQB=180°又∵∠AQB=180°﹣60°﹣30°=90°,∴在Rt△AQB中,AB=答:A、B间的距离为300=m.=300(m),【点评】此题考查的知识点是解直角三角形的应用,解题的关键是通过角的计算得出BQ=PQ,再由直角三角形先求出AQ,根据勾股定理求出AB.20.【考点】FF:两条直线相交或平行问题;R6:关于原点对称的点的坐标.【分析】(1)先依据一次函数解析式,求得点B,C的坐标,再根据解方程组,求得点A的坐标,即可得到△ABC的面积;(2)根据P在直线y=x+4上,即可设P(m,m+4),再根据P、Q关于原点成中心对称,可得Q(﹣m,﹣m﹣4).最后根据点Q在直线y=﹣3x﹣3上,可得﹣m﹣4=3m﹣3,进而得到m的值.【解答】解:(1)令y=x+4中y=0,则x=﹣4,∴B(﹣4,0);令y=﹣3x﹣3中y=0,则x=﹣1,∴C(﹣1,0);解方程组,得,∴A(﹣,).∴S△ABC=×[﹣1﹣(﹣4)]×=.(2)∵点P在直线y=x+4上,∴设P(m,m+4),∵P、Q关于原点成中心对称,∴Q(﹣m,﹣m﹣4).∵点Q在直线y=﹣3x﹣3上,∴﹣m﹣4=3m﹣3,解得:m=﹣,∴m+4=,).∴点P的坐标为(﹣,【点评】本题考查了一次函数图象上点的坐标特征、三角形的面积公式,解题的关键是掌握关于原点对称的点的坐标特征.两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).21.【考点】B7:分式方程的应用;CE:一元一次不等式组的应用;FH:一次函数的应用.【分析】(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+400)元,根据题意列出方程,求出方程的解即可得到结果;(2)由总利润=单辆利润×辆数,列出y与x的关系式,利用一次函数性质确定出所求即可.【解答】解:(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+400)元,根据题意,得解得x=1600,经检验,x=1600是原方程的解,x+400=1600+400=2000,答:每辆A型自行车的进价为2000元,每辆B型自行车的进价为1600元;(2)由题意,得y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000,根据题意,得解得:33≤m≤40,∵m为正整数,∴m=34,35,36,37,38,39,40.,=,∵y=﹣50m+15000,k=﹣50<0,∴y随m的增大而减小,∴当m=34时,y有最大值,最大值为:﹣50×34+15000=13300(元).答:当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.【点评】此题考查了一次函数的应用,分式方程的应用,以及一元一次不等式组的应用,弄清题意是解本题的关键.22.【考点】LO:四边形综合题.【分析】(1)作FH⊥AB于H,由AAS证明△EFH≌△CED,得出FH=CD=4,AH=AD=4,求出BH=AB+AH=8,由勾股定理即可得出答案;(2)过F作FH⊥AD交AD的延长线于点H,作FM⊥AB于M,则FM=AH,AM=FH,①同(1)得:△EFH≌△CED,得出FH=DE=3,EH=CD=4即可;②求出BM=AB+AM=7,FM=AE+EH=5,由勾股定理即可得出答案;(3)分两种情况:①当点E在边AD的左侧时,过F作FH⊥AD交AD的延长线于点H,交BC延长线于K,同(1)得::△EFH≌△CED,得出FH=DE=4+AE,EH=CD=4,得出FK=8+AE,在Rt△BFK中,BK=AH=EH﹣AE=4﹣AE,由勾股定理得出方程,解方程即可;②当点E在边AD的右侧时,过F作FH⊥AD交AD的延长线于点H,交BC延长线于K,同理得AE的长.【解答】解:(1)作FH⊥AB于H,如图1所示:则∠FHE=90°,∵四边形ABCD和四边形CEFG是正方形,∴AD=CD=4,EF=CE,∠ADC=∠DAH=∠BAD=∠CEF=90°,∴∠FEH=∠CED,在△EFH和△CED中,,∴△EFH≌△CED(AAS),∴FH=CD=4,AH=AD=4,∴BH=AB+AH=8,∴BF===4;(2)过F作FH⊥AD交AD的延长线于点H,作FM⊥AB于M,如图2所示:则FM=AH,AM=FH,①∵AD=4,AE=1,∴DE=3,同(1)得:△EFH≌△CED(AAS),∴FH=DE=3,EH=CD=4,即点F到AD的距离为3;②∴BM=AB+AM=4+3=7,FM=AE+EH=5,∴BF===;(3)分两种情况:①当点E在边AD的左侧时,过F作FH⊥AD交AD于点H,交BC延长线于K.如图3所示:同(1)得::△EFH≌△CED,∴FH=DE=AE﹣4,EH=CD=4,∴FK=8+AE,在Rt△BFK中,BK=AH=EH﹣AE=4﹣AE,由勾股定理得:(4﹣AE)2+(8+AE)2=(3解得:AE=1或AE=﹣5(舍去),∴AE=1;②当点E在边AD的右侧时,过F作FH⊥AD交AD的延长线于点H,交BC延长线于K,如图4所示:同理得:AE=2+或2﹣(舍去).)2,③当点E在AD上时,可得:(8﹣AE)2+(4+AE)2=90,解得AE=5或﹣1,5>4不符合题意.综上所述:AE的长为1或2+.【点评】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾股定理等知识,本题综合性强,有一定难度,证明三角形全等是解决问题的关键.23.【考点】HF:二次函数综合题.【分析】(1)用待定系数法求出抛物线解析式即可;(2)设点P(m,m2+2m+1),表示出PE=﹣m2﹣3m,再用S四边形AECP=S△AEC+S△APC=AC×PE,建立函数关系式,求出极值即可;(3)先判断出PF=CF,再得到∠PCA=∠EAC,以C、P、Q为顶点的三角形与△ABC相似,分两种情况计算即可.【解答】解:(1)∵点A(0,1).B(﹣9,10)在抛物线上,∴∴,,∴抛物线的解析式为y=x2+2x+1,(2)∵AC∥x轴,A(0,1)∴x2+2x+1=1,∴x1=﹣6,x2=0,∴点C的坐标(﹣6,1),∵点A(0,1).B(﹣9,10),∴直线AB的解析式为y=﹣x+1,设点P(m,m2+2m+1)∴E(m,﹣m+1)∴PE=﹣m+1﹣(m2+2m+1)=﹣m2﹣3m,∵AC⊥EP,AC=6,∴S四边形AECP=S△AEC+S△APC=AC×EF+AC×PF=AC×(EF+PF)=AC×PE=×6×(﹣m2﹣3m)=﹣m2﹣9m=﹣(m+)2+∵﹣6<m<0∴当m=﹣时,四边形AECP的面积的最大值是此时点P(﹣,﹣);,,(3)∵y=x2+2x+1=(x+3)2﹣2,∴P(﹣3,﹣2),∴PF=yF﹣yP=3,CF=xF﹣xC=3,∴PF=CF,∴∠PCF=45°同理可得:∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的Q,设Q(t,1)且AB=9,AC=6,CP=3∵以C、P、Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,∴∴,,∴t=﹣4或t=﹣8(不符合题意,舍)∴Q(﹣4,1)②当△CQP∽△ABC时,∴∴,,∴t=3或t=﹣15(不符合题意,舍)∴Q(3,1)【点评】此题是二次函数综合题,主要考查了待定系数法,相似三角形的性质,几何图形面积的求法(用割补法),解本题的关键是求函数解析式.


更多推荐

性质,考查,调查,本题,三角形