2024年1月15日发(作者:数学试卷卷面分析学生怎样写)
习题6?2 1? 求图6?21 中各画斜线部分的面积?
(1)
解 画斜线部分在x轴上的投影区间为[0? 1]? 所求的面积为
12x3112x2]1.
A(xx)dx[
00326 (2)
解法一 画斜线部分在x轴上的投影区间为[0? 1]? 所求的面积为
1
A0(eex)dx(exex)|101?
解法二 画斜线部分在y轴上的投影区间为[1?
e]? 所求的面积为
eeedye(e1)1?
A1lnydyylny|11
(3)
解 画斜线部分在x轴上的投影区间为[?3? 1]? 所求的面积为
A3[(3x2)2x]dx32?
13 (4)
解 画斜线部分在x轴上的投影区间为[?1? 3]? 所求的面积为
32
A1(2x3x2)dx(x23x1x3)|3?
1333
2. 求由下列各曲线所围成的图形的面积?
(1)
y1x2与x2?y2?8(两部分都要计算)?
2 解?
1604cos2tdt824?
33
A2(22)2S164?
3 (2)y1与直线y?x及x?2?
x 解?
所求的面积为
A1)dx3ln2?
(x1x22
(3) y?ex?
y?e?x与直线x?1?
解?
所求的面积为
A0(exex)dxe12?
1e (4)y=ln
x,
y轴与直线y=ln
a,
y=ln
b (b>a>0).
解
所求的面积为
3? 求抛物线y??x2?4x?3及其在点(0? ?3)和(3? 0)处的切线所围成的图形的面积?
解?
y???2
x?4?
过点(0, ?3)处的切线的斜率为4? 切线方程为y?4(x?3)?
过点(3, 0)处的切线的斜率为?2? 切线方程为y??2x?6?
两切线的交点为(3, 3)? 所求的面积为
2332[4x3(x24x3)][2x6(x24x3]dx93042
A?
p2 4? 求抛物线y=2px及其在点(,p)处的法线所围成的图形的面积?
2 解
2y?y??2p ?
p2p 在点(,p)处?
y(p,p)1? 法线的斜率k??1?
y2法线的方程为yp(x)? 即xp23py?
2求得法线与抛物线的两个交点为(,p)和(9p,3p)?
2p2法线与抛物线所围成的图形的面积为
3py23pp
A3p(y)dy(y1y21y3)16p2?
3p22p226p3p5? 求由下列各曲线?所围成的图形的面积?
(1)??2acos?
?? 解?
所求的面积为
1222
A(2acos)d4a02cos2d??a2?
22 (2)x?acos3t,
y?asin3t;
解
所求的面积为
12a2[02sin4tdt02sin6tdt]3a2?
8 (3)?=2a(2+cos?
)
解
所求的面积为
22
A01[2a(2cos)]2d2a20(44coscos2)d18a2?
2 6? 求由摆线x?a(t?sin
t)?
y?a(1?cos
t)的一拱(0?t?2?)与横轴?所围成的图形的面积?
解?
所求的面积为
a20(12cost1cost)dt3a2?
2a2 7? 求对数螺线??ae?(??????)及射线???所围成的图形面积?
解
所求的面积为
A1(ae)2d1a2e2da(e2e2)?
22248? 求下列各曲线所围成图形的公共部分的面积?
(1)??3cos? 及??1?cos? 解
曲线??3cos? 与??1?cos??交点的极坐标为A(3,)?
B(3,)? 由对称性? 所求的面积2323为
1123
A2[0(1cos)d2(3cos)2d]5?
2234 (2)2sin及2cos2?
解
曲线2sin与2cos2的交点M的极坐标为M(2,)? 所求的面积为
261126
A2[0(2sin)d4cos2d]13?
22662 9? 求位于曲线y=ex下方??该曲线过原点的切线的左方以及x轴上方之间的图形的面积?
解 设直线y?kx与曲线y?ex相切于A(x0?
y0)点? 则有
y0kx0
y0ex0?
x0y(x)ek0求得x0?1?
y0?e?
k?e ?
所求面积为
ee112ey0ylny0y1dye?
(ylny)dy0e02ey2e10? 求由抛物线y2?4ax与过焦点的弦所围成的图形的面积值?
解 设弦的倾角为?? 由图可以看出? 抛物线与过焦点成的图形的面积为
AA0A1?
的最小的弦所围 显然当2时?
A1?0? 当时?
A?0?
12
因此? 抛物线与过焦点的弦所围成的图形的面积的最小值为
A02a0a8832axdxaxa2?
03311? 把抛物线y2?4ax及直线x?x0(x0?0)所围成的图形绕x轴旋转? 计算所得旋转体的体积?
解 所得旋转体的体积为
Vx02x02x00ydx04axdx2ax2ax020?
12? 由y?x3?
x?2?
y?0所围成的图形? 分别绕x轴及y轴旋转?
算所得两个旋转体的体积?
解 绕x轴旋转所得旋转体的体积为
V2x20y2dx20x6dx17x701287?
绕y轴旋转所得旋转体的体积为
32353y580645?
13? 把星形线x2/3y2/3a2/3所围成的图形? 绕x轴旋转? 计算所得旋转体的体积?
解 由对称性? 所求旋转体的体积为
2a(a23a4x23a2x433330x2)dx32105a3?
计
14? 用积分方法证明图中球缺的体积为VH2(RH3)?
证明
VR2RHx(y)dyRRH(R2y2)dy
(R2y1y3)RH3RHH2(R3)?
15? 求下列已知曲线所围成的图形? 按指定的轴旋转所产生的旋转体的体积?
(1)yx2?
xy2? 绕y轴?
解
V1ydy1(y2)212151300dy(2y5y)010?
(2)yachxa?
x?0?
x?a?
y?0? 绕x轴?
解
Vay2(x)dxa22x令xau00achadx
a310ch2udu
a34(2sh2)?
(3)x2(y5)216? 绕x 轴?
解
V42244(516x)dx4(516x2)2dx
404016x2dx1602?
(4)摆线x?a(t?sin
t)?
y?a(1?cos
t)的一拱?
y?0? 绕直线
y?2a?
解
V02a(2a)2dx022a(2ay)2dx
8a32a30(1cost)sin2tdt7a32?
16? 求圆盘x2y2a2绕x??b(b>a>0)旋转所成旋转体的体积?
解
Vaaa(bay)dy(ba2y2)2dy
222aa
8b0a2y2dy2a2b2?
椭圆的 17? 设有一截锥体? 其高为h? 上、下底均为椭圆?
轴长分别为2a、2b和2A、2B? 求这截锥体的体积?
解 建立坐标系如图? 过y轴上y点作垂直于y轴的平面? 则平面与截锥体的截面为椭圆? 易得其长短半轴分别为
AAay?
BBby?
hhAay)(BBby)?
hh截面的面积为(A于是截锥体的体积为
VAay)(BBby)dy1h[2(abAB)aBbA]?
(A0hh6h 18? 计算底面是半径为R的圆? 而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积?
解 设过点x且垂直于x轴的截面面积为A(x)? 由已知? 它是边长为
A(x)知条件R2x的等边三角形的面积? 其值为
3(R2x2)?
3(R2x2)dx43R3?
3所以
VRR 19? 证明 由平面图形0?a?x?b? 0?y?f(x)绕y轴旋转所成的旋转体的体积为
V2xf(x)dx?
ab 证明 如图? 在x处取一宽为dx的小曲边梯形? 小曲边梯形绕y轴旋转所得的旋转体的体积近似为2?x?f(x)dx? 这就是体积元素? 即
dV?2?x?f(x)dx?
于是平面图形绕y轴旋转所成的旋转体的体积为
V2xf(x)dx2xf(x)dx?
aabb 20? 利用题19和结论? 计算曲线y?sin
x(0?x??)和x轴所围成的图形绕y轴旋转所得旋转体的体积?
解
V20xsinxdx2xdcosx2(xcosxsinx)022?
0 21? 计算曲线y?ln
x上相应于3x8的一段弧的长度?
解
s831y(x)dx28381x2121()dxdx?
3xx
令1x2t? 即xt21? 则
s322331t1ln3dtdtdtdt1?
2222222t1t122t1t13tt 22? 计算曲线y长度?
x(3x)上相应于1?x?3的3一段弧的 解
yxxx?
y1311x?
2x2
y2111x?
1y21(x1)?
24x24x所求弧长为
311)dx1(2xx2x)3234?
s(x121233x 23? 计算半立方抛物线y2(x1)3被抛物线y2截得的一段弧的长度?
23x3y22(x1)36)?
(2, 6)?
3 解 由得两曲线的交点的坐标为(2,
x33y23所求弧长为s2 因为
211y2dx?
2yy2(x1)2?
y(x1)22(x1)4y?
yy2(x1)423(x1)?
3(x1)32所以
s22113228532(x1)dx3213x1d(3x1)9[(2)21]?
24? 计算抛物线y2?2px 从顶点到这曲线上的一点M(x?
y)的弧长?
解
sy1x2(y)dyy1(y)2dy1y0p20pp0y2dy
ypyp2y2
2pp2y22lnp?
25? 计算星形线xacos3t?
yasin3t的全长?
解 用参数方程的弧长公式?
1220sintcostdt6a?
26? 将绕在圆(半径为a)上的细线放开拉直? 使细周始终相切? 细线端点画出的轨迹叫做圆的渐伸线? 它的方程为
xa(costtsint)?
ya(sinttcost)?
计算这曲线上相应于t从0变到?的一段弧的长度?
解 由参数方程弧长公式
线与圆
aa2?
tdt02 27? 在摆线x?a(t?sin
t)?
y?a(1?cos
t)上求分摆线第一拱成1? 3的点的坐标?
解 设t从0变化到t0时摆线第一拱上对应的弧长为s(t0)? 则
t0t0t2asindt4a(1cos)?
022 当t0?2?时? 得第一拱弧长s(2?)?8a? 为求分摆线第一拱为1? 3的点为A(x?
y)? 令
4a(1cos0)2a?
t2解得t02? 因而分点的坐标为?
32sin2)(23)a?
3332 横坐标xa( 纵坐标ya(1cos2)3a?
32故所求分点的坐标为((23)a,
3a)?
322 28? 求对数螺线ea相应于自??0到???的一段弧长?? 解 用极坐标的弧长公式?
021a1aed(ea1)?
a2a
29? 求曲线???1相应于自3至4的一段弧长?
43 解 按极坐标公式可得所求的弧长
4334
112d5ln3?
2122 30? 求心形线??a(1?cos
???的全长?? 解 用极坐标的弧长公式?
4a0cosd8a?
2习题6?3
1? 由实验知道? 弹簧在拉伸过程中? 需要的力F(单位?
N)与伸长量s(单位? cm)成正比? 即F?ks (k为比例常数)? 如果把弹簧由原长拉伸6cm? 计算所作的功?
解 将弹簧一端固定于A? 另一端在自由长度时的点O为坐标原点? 建立坐标系? 功元素为dW?ksds? 所求功为
W1ks218k(牛?厘米)?
ksds02066 2? 直径为20cm、高80cm的圆柱体内充满压强为10N/cm2的蒸汽? 设温度保持不变? 要使蒸汽体积缩小一半? 问需要作多少功?
解 由玻?马定律知?
PVk10(10280)80000?
设蒸气在圆柱体内变化时底面积不变? 高度减小x厘米时压强 为P(x)牛/厘米? 则
2
P(x)[(102)(80x)]80000?
P(x)800?
80 功元素为dW(102)P(x)dx?
所求功为
W400408001dx800ln2(J)?
(10)dx80000080802 3? (1)证明? 把质量为m的物体从地球表面升高到h处所作的功是
WmgRh?
Rh其中g是地面上的重力加速度?
R是地球的半径?
(2)一颗人造地球卫星的质量为173kg? 在高于地面630km处进入轨道? 问把这颗卫星从地面送到630的高空处? 克服地球引力要作多少功?已知g?9?8m/s2? 地球半径R?6370km?
证明 (1)取地球中心为坐标原点? 把质量为m的物体升高的功元素为
dWkMmdy?
y2所求的功为
WRhRkMmdykmMh?
2yR(Rh)
2431735.98106301059.7510 (2)W6.6710(kJ)?
6370103(6370630)10311 4? 一物体按规律xct3作直线运动? 媒质的阻力与速度的平方成正比? 计算物体由x?0移至x?a时? 克服媒质阻力所作的功?
解 因为xct3? 所以
2x
vx(t)3cx? 阻力fkv9kct? 而t()3? 所以
c2224424x
f(x)9kc()39kc3x3?
c2 功元素dW??f(x)dx? 所求之功为
W[f(x)]dx9kcxdx9kc00aa23432a302727xdxkc3a3?
743 5? 用铁锤将一铁钉击入木板? 设木板对铁钉的阻力与铁钉击入木板的深度成正比?
在击第一次时? 将铁钉击入木板1cm? 如果铁锤每次打击铁钉所做的功相等? 问锤击第二次时? 铁钉又击入多少?
解 设锤击第二次时铁钉又击入hcm? 因木板对铁钉的阻力f与铁钉击入木板的深度x(cm)成正比? 即f?kx? 功元素dW?f
dx?kxdx?
击第一次作功为
W1kxdxk?
0112
击第二次作功为
W21h1kxdx1k(h22h)?
2 因为W1W2? 所以有
kk(h22h)?
1212解得h21(cm)?
6? 设一锥形贮水池? 深15m? 口径20m? 盛满水? 今以唧筒将水吸尽? 问要作多少功?
解 在水深x处? 水平截面半径为r10x? 功元素为
23
dWxr2dxx(10x)2dx?
23所求功为
?1875(吨米)?57785.7(kJ)?
7? 有一闸门? 它的形状和尺寸如图? 水面超过门顶2m?
受的水压力?
解 建立x轴? 方向向下? 原点在水面?
水压力元素为
求闸门上所
dP1x2dx2xdx?
闸门上所受的水压力为
P2xdxx2525221(吨)=205? 8(kN)?
8? 洒水车上的水箱是一个横放的椭圆柱体? 尺寸如图所示? 当水箱装满水时? 计算水箱的一个端面所受的压力?
解 建立坐标系如图? 则椭圆的方程为
(x3)2y241?
12(3)24 压力元素为
dP1x2y(x)dxx8(3)2(x3)2dx?
344所求压力为
99
2cos2tdx(吨)?17.3(kN)?
4016(提示? 积分中所作的变换为xsint)
3344 9? 有一等腰梯形闸门? 它的两条底边各长10m和6m? 高为20m? 较长的底边与水面相齐? 计算闸门的一侧所受的水压力?
解 建立坐标系如图? 直线AB的方程为
y51x?
10 压力元素为
dP1x2y(x)dxx(10x)dx?
15所求压力为
P200x(101x)dx1467(吨)?14388(千牛)?
5 10? 一底为8cm、高为6cm的等腰三角形片? 铅直地沉没在水中? 顶在上? 底在下且与水面平行? 而顶离水面3cm? 试求它每面所受的压力?
解 建立坐标系如图?
腰AC的方程为yx? 压力元素为
23
dP(x3)2xdxx(x3)dx?
2343所求压力为
P4x(x3)dx4(1x33x2)6168(克)?????(牛)?
0333206 11? 设有一长度为l、线密度为?的均匀细直棒? 在与棒的一端垂直距离为a单位处有一质量为m的质点M? 试求这细棒对质点M的引力?
解 建立坐标系如图? 在细直棒上取一小段dy? 引力元素为
dFGmdyGm22dy?
22ayaydF在x轴方向和y轴方向上的分力分别为
dFxdF?
dFyarydF?
rlGmGmla1)dyaGmdy
Fx(2?
222222200ray(ay)ayaalllyGm111)?
dyGmdyGm(
Fy20(a2y2)a2y20ray2aa2l2l 12? 设有一半径为R、中心角为
??的圆弧形细棒? 其线密度为常数???? 在圆心处有一质量为m的质点F? 试求这细棒对质点M的引力?
解 根据对称性?
Fy?0?
Gm(Rd)Gmcoscosd?
2RR2Gm22Gm
cosdsin?
R0R22Gmsin? 方向自M点起指向圆弧中点?
R2总 习 题 六
引力的大小为
1? 一金属棒长3m? 离棒左端xm处的线密度为(x)1
x1(kg/m)? 问x为何值时? [0?
x]一段的质量为全棒质量的一半?
解
x应满足x01dt131dt?
20t1t1 因为x01dt[2t1]x2x12?
131dt1[2t1]31?
0020t12t1所以
2x121?
x5(m)?
4所围图形公 2? 求由曲线??asin??
??a(cos??sin?)(a>0)共部分的面积?
31a1 解
S()24a2(cossin)2d
222222aa
82342(1sin2)d1a2?
4 3? 设抛物线yax2bxc通过点(0? 0)? 且当x?[0? 1]时?
y?0? 试确定a、b、c的值? 使得抛物线yax2bxc与直线x?1?
y?0所围图形的面积为轴旋转而成的旋转体的体积最小?
解 因为抛物线yax2bxc通过点(0? 0)? 所以c?0? 从而
4? 且使该图形绕x9
yax2bx?
抛物线yax2bx与直线x?1?
y?0所围图形的面积为
S(ax2bx)dx01ab?
32令ab4? 得b86a?
3299 该图形绕x轴旋转而成的旋转体的体积为
2a186a)2a(86a)]?
[(53929 令dV[a126a81(812a)]0? 得a5? 于是b?2?
d538118332与直线 4? 求由曲线yxx?4?
x轴所围图形绕y轴旋转而成的旋转体的体积?
解 所求旋转体的体积为
742512?
V2xxdx2x20077432 5? 求圆盘(x2)2y21绕y轴旋转而成的旋转体的体积?
解
V22
x131(x2)2dx
令x2sint 4(2sint)costdt42222?
6? 抛物线y1x2被圆22所需截下的有限部分的弧长?
xy3222xy3 解 由1x2解得抛物线与圆的两个交点为(2, 1)?
(2, 1)? 于是所求的弧长y2为
6ln(23)?
面相切?
少功?
7? 半径为r的球沉入水中? 球的上部与水球的比重与水相同? 现将球从水中取出? 需作多 解 建立坐标系如图? 将球从水中取出时? 球的各点上升的高度均为2r? 在x处取一厚度为dx的薄片? 在将球从水中取出的过程中? 薄片在水下上升的高度为r?x? 在水上上升的高度为r?x? 在水下对薄片所做的功为零? 在水上对薄片所做的功为
dWg(rx)(r2x2)dx?
对球所做的功为
Wg4r2g?
22(rx)(rx)dxr3r 8? 边长为a和b的矩形薄板? 与液面成??角斜沉于液体内? 长边平行于液面而位于深
h处? 设a>b? 液体的比重为?? 试求薄板每面所受的压力?
解 在水面上建立x轴? 使长边与x轴在同一垂面上? 长边的上端点与原点对应? 长边在x轴上的投影区间为[0?
bcos?]? 在x处x轴到薄板的距离为h?xtan?? 压力元素为
dPg(hxtan)adxga(hxtan)dx?
coscos薄板各面所受到的压力为
gabcos1gab(2hbsin)?
(hxtan)dx
Pcos02 9? 设星形线xacos3t?
yasin3t上每一点处的线密度的大小等于该点到原点距离的立方? 在原点O处有一单位质点? 求星形线在第一象限的弧段对这质点的引力?
解 取弧微分ds为质点? 则其质量为
(x2y2)3ds(x2y2)3ds?
其中ds[(acos3t)]2[(asin3t)]2dt3asintcostdt?
设所求的引力在x轴、y轴上的投影分别为Fx、Fy? 则有
1(x2y2)33Ga2x2243GacostsintdtGds?
222205(xy)xy
Fx20
Fx201(x2y2)3y3Ga22243GacostsintdtGds?
2205(x2y2)xy所以F(Ga2, Ga2)?
3535
更多推荐
面积,图形,体积,所求,围成,旋转体,计算,原点
发布评论