2024年4月2日发(作者:2018中考陕西数学试卷)
1. 已知:AB=4,AC=2,D是BC中点,AD是整数,求AD
A
B
D
C
解:延长AD到E,使AD=DE
∵D是BC中点
∴BD=DC
在△ACD和△BDE中
AD=DE
∠BDE=∠ADC
BD=DC
∴△ACD≌△BDE
∴AC=BE=2
∵在△ABE中
AB-BE<AE<AB+BE
∵AB=4
即4-2<2AD<4+2
1<AD<3
∴AD=2
2. 已知:D是AB中点,∠ACB=90°,求证:
CD
A
1
AB
2
D
C B
延长CD与P,使D为CP中点。连接AP,BP
∵DP=DC,DA=DB
∴ACBP为平行四边形
又∠ACB=90
∴平行四边形ACBP为矩形
∴AB=CP=1/2AB
3. 已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2
A
1
2
B
E
C F D
证明:连接BF和EF
∵ BC=ED,CF=DF,∠BCF=∠EDF
∴ 三角形BCF全等于三角形EDF(边角边)
∴ BF=EF,∠CBF=∠DEF
连接BE
在三角形BEF中,BF=EF
∴ ∠EBF=∠BEF。
∵ ∠ABC=∠AED。
∴ ∠ABE=∠AEB。
∴ AB=AE。
在三角形ABF和三角形AEF中
AB=AE,BF=EF,
∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF
∴ 三角形ABF和三角形AEF全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC
A
1
2
F
C
D
E
B
过C作CG∥EF交AD的延长线于点G
CG∥EF,可得,∠EFD=CGD
DE=DC
∠FDE=∠GDC(对顶角)
∴△EFD≌△CGD
EF=CG
更多推荐
中点,三角形,连接,陕西,中考,矩形
发布评论