2023年12月8日发(作者:苏州太仓中考数学试卷真题)
初一数学上册计算题(400道题)
1(1)2= (2)-1=
223(3)1 = (4)2 =
94(5)120033= (6)23=
23232(7)131= (8)33 =
(9)(3)2(23)=
(11)2222323
(13)42145453
(15)22313023
(17)[1(10.512)][2(3)2]
(19)22313023
(21)(10)2[(4)2(332)2];
10)32(1)22=
12)58(4)20.25(5)(4)3
14)262432217
16)
14162(3)2
18)
3(23)323(3)2(32)20)32(2)2;
22)(1)4(10.5)13[2(2)2];( (
(( ( ( ( (23)0.52
114224(1)3; (24)(2)2003(2)2002;
429(25)(2)3[(4)2](3)(2); (26)(0.25)322200942004.
(27)0.252342231
2(29)3212.20.331325331
(31)8
23(4)318
(33)(3)(9)(8)(5)
(35)5569231317432
(37)25(0.125)(4)(4)(8)1154
28)222212410
30)2120.5322832)(56)(79)
34)15(3256)
36)24(4)2132
( (
((((38)如果a1(b2)0,求(ab)22011a2010-(3aba)的值
(39)已知|a1|与|b4|互为相反数,求ab的值。
(40)229(112)3(1.2)20.42
(42)[45(71112596)36]5
(44)(13478712)(78)(23)
(46)11312
(41)|111210101111|1112
(43)
255557(12)712(13)(4)(45)1121134
(47)
2218(2)22
(48)643 (49)3.14166.49553.1416(5.4955)
(50)100222155811323(2) (51)(5)77(7)12()
3
(52)(2)2012(0.5)2013(61314)7
122(54)(3)221434223
(56)(20)(3)(5)(7)
(58)(6.5)(2)(13)(5)
(59)若a7,b3,求a + b的值.
3322 (53)(12)3(12)2(1)116(2)(1)2012
(55)(5231234)(12)
(57)3472(126)(3)1
60)已知│a+1│与│b-2│互为相反数,求a-b的值.
( 5(61) (-12)÷4×(-6)÷2; ; (62)(4)20.25(5)(4)3
812111311(63)11231; ; (64)(3)22422
43324244(65)499159; (66)713620;
(67)1(2)235; (68)(-5)×(-7)-5×(-6);
32811(69)0.25 ; (70)22.
352222523121(71)(3)22422 (72)()(12)
4312343511131(73)(4)20.25(5)(4)3 (74)11231;
824244121 (75)(3)2422; (76)(-5)×(-8)×0×(-10)×(-15);
433222(77)(-3)×(-4)×(-5)+(-5)×(-7) (78)(-0.1)×(-1)×(-100)-0.•01×(1000).
13281111×(-1)×(-)×(-); (80)- + --)×(-20);
443723451117537(81)(-3)×(-0.12)×(-2)×33; (82)(- + - )×(-36).
34396418521211 (83)-×(12-2-0.6) (84)(+)×|-|×2×(-5);
652343121(85)(-1)×3(-)×(-1) (86)
9(11)12(8)
83313(87)(-2)×(-)= (88)0×(-13.52)= (89)(-1)×a =
3724(90)(-3.25)×(+)= (91)(-185.8)×(-36)×0×(-25)=
13534(92)(4)(7)(25) (93)
()8()
53341415(94)(8) (95)()(8)
431520431223(96)(-)×0.125×(-2)×(-8); (97)8()(4)()(8)
735952(98)(-0.25)×0.5×(-4)×4; (99)(-4)×(-18.36)×2.5;
7251(100)(-)×(-18)+(-)×(-3)×2;
9115665(101)(-47.65)×2+(-37.15)×(-2)+10.5×(-7).
111111(79)2(102)[(-2)×(-4)+(-5)]×[-3-(-2)×(-3)].
2243124111(0.6)(3) (104)
()()()()
35352352327(105)1(2)235 (106)()13
33(103)122(107)(-23)+7+(-152)+65 (108)|5+(-1(-5)+|―13)| (109)3|
(112)38+(-22)+(+62)+(-78) (113)(-8)+(-10)+2+(-1)
111(114)(-2(-8)+47+18+(-27)
3)+0+(+4)+(-6)+(-2) (115)(116)(-5)+21+(-95)+29 (117)(-8.25)+8.25+(-0.25)+(-5.75)+(-7.5)
(118) 6+(-7)+(9)+2 (119) 72+65+(-105)+(-28)
(120)(-23)+|-63|+|-37|+(-77) (121)19+(-195)+47
1(122)(+18)+(-32)+(-16)+(+26) (122)(-312)-54
1 (123)(-0.8)+(-1.2)+(-0.6)+(-2.4) (124)(-8)+(-312)+2+(-2)+12
321(125)55+(-52(-6.37)+(-333)+45+(-3) (126)4)+6.37+2.75
(127)(-12.5)-(-7.5) (128)(-26)―(-12)―12―18
3(129)―1―(-12)―(+2) (130)(-20)-(+5)-(-5)-(-12)
(131)(-23)―(-59)―(-3.5) (132)|-32|―(-12)―72―(-5)
53142(133)(-1(+10)―(-7)―(-5)―104)―(-8)―8 (134)7
32(135)(-16(+15)―3―(-3.2)―7 (136)7)―(-7)―7
32(137)(+6.1)―(-4.3)―(-2.1)―5.1 (138)(-23)―(-14)―(-13)―(+1.75)
337212(139)(-323)―(-2)4―(-13)―(-1.75) (140) -84-59+46-39
51211(141) -434+6+(-3)―2 (142) 0.5+(-4)-(-2.75)+2
1 (143)(+4.3)-(-4)+(-2.3)-(+4) (144)(-0.5)-(-314)+6.75-52
2(145)(-9)×2(-13)×(-0.26) (147)(-2)×31×(-0.5)
3 (146)1(148)1(-4)×(-10)×0.5×(-3)
3×(-5)+3×(-13) (149)34(150)(-8)×4(-0.25)×(-7)×4×(-7)
3×(-1.8) (151)374(152)(-7)×(-5)×(-12) (153)(-8)×4×(-12)×(-0.75)
314(154)4×(-96)×(-0.25)×48 (155)(7-118+14)×56
57574(156)(6―3(-36)×(9+6-12)
4―9)×36 (157)5421(158)(-3(-66)×〔122-(-1〕
4)×(8-3-0.4) (159)3)+(-11)75711(160)25×3(18+34-(-25)×2+25×4 (161)4-6+9)×72
3852(162)1(-24)÷6
3×(214-7)×(-5)×(-16) (163)18÷(-3) (164)32(165)(-57)÷(-3) (166)(-5)÷5 (167)(-42)÷(-6)
539(168)(+21)÷(-7) (169)(-13)÷9 (170)0.25÷(-18)
24(171)-36÷(-11(-1)÷(-4)÷7
3)÷(-3) (172)6111(173)3÷(-7)×(-79) (174)0÷[(-34)×(-7)] (175)-3÷(3-4)
611(176)(-247)÷(-6) (177) 2÷(5-18)×18 (178)113÷(-3)×(-3)
3375333(179) -7(3(92-8+4)÷(-4)
8×(-14)÷(-8) (180)4-8)÷(-6) (181)35312 (182) -3.5 ×(16-0.5)×7÷2 (183) -17÷(-16)×18×(-7)
55555112(184)65×(-3-2)÷4 (185)7÷(-25)-7×12-3÷4
393224(186)0.8×11+4.8×(-7)-2.2÷7+0.8×11 (187)2÷(-7)×7÷(-517)
37734(188)(-1620512)×(-15×4) (189)187(-2.4)
1(190)[15-(1÷1+3]÷(-1) (191)5×(-5)÷(-15)×5
512121(192) -(1÷(-42) (193) -13×2(-13)-7×0.34
3-21+14-7)3-0.34×7+3×11(194) 8-(-25)÷(-5) (195)(-13)×(-134)×13×(-67)
1112(196)(-47(-16-50+35)÷(-2)
8)-(-52)+(-44)-38 (197)1912(198)(-0.5)-(-314)+6.75-52 (199)178-87.21+4321+5321-12.79
21(200)(-6)×(-4)+(-32)÷(-8)-3 (201)-7-(-12)+|-12|
9581(202)(-9)×(-4)+ (-60)÷12 (203) [(-14)-17+21]÷(-42)
3751(204)-|-3|÷10-(-15)×13 (205)-15×(32-16)÷22
173111(206)(213-32+118)÷(-16)×(-7) (207)-4×(8-23-0.04)
(208)-2×32 ( 209)-2-1 (210)34-4
233(211)13-2×1 (212)3÷4 (213)2×2
3222(214)322 +4 (215)
2×2×2 (216)2×32-23
3345223(217)22+2+23 (218)22-(3)×1-1
33313÷3×2 (219)12+2 (220)0-2232(221)22×222223÷10.83 (222)-32×112÷3-2
221(223)35
4×(-3+1) ×0 (224)6+2×(225)-10+8÷2-4×3 (226)-15-0.42.5
25(227)1-(1-0.5)×25212333 (228)2×2×32
3131282×1(229)4×3+6 (230)13
2×3×72÷(-8)-1(231) -72+2×3+(-6)÷13 (232)2×(-2)
224322(233)543×(227513242-3×]÷
)×7 (234)2-2[128114521(235)6÷9÷69 (236)36×123
22(237)-{330.41(2)} (238)-1+(1-0.5)××[2×3]
33421231(239)-4×176+532 (240)-33-821+3×2÷333231
0.252138
33412542(243)-10+8÷(-2)-3×(-4)-1; (244)-1-(1-0.5)×3×[2-(-3)].
(241)(-5.3)-(+4.8)+(-3.2)-(-2.5); (242)(245)1131371245 (246)9936
7224864222(247)15x4x10x (248)ppp
(249)5aa(7a)(3a) (250)xy3xy2yxyx
nnnn22221212ab0.4ab2a2bab2 (252)3a{2c[6a(cb)c(a8b6)]}
42531(253)x23x; (254)(x+1)-3(x-1)=1-3x; (255)(x-2)-2(4x-1)=3(1-x).
443x14x2x4x2x3x31(x5)x4255236(256) (257); (258)
(251)2yx07
(260)
(259)x5y5(262)3x5y9
(261)
2x3y63x14y4
5y13x5
(263)
(264)8u3v20
3x2y6mn13232x3y176u5v70mn334(265)32x94x
(266)2(2x3)5(x1)
(267)193(x7)0
2x2x1x53x2(268) (269) (270)3x22x5
12322x423x(271)2 (272)3(y2)182(y1) (273)11
345x32xx2(x1)42(13x)(274)14x (275)79 (276)3x15x1432(277)(1)(2)
12; (279)(2xyy)(yyx) ;
mn4mn; (278)3x27x(4x3)2x422(280)(4a2a6)2(2a2a5) 其中
a1.
(280)
(281)
(282)
11312a2(ab2)(ab2) 其中
a2,b.
22233已知
A3a2a1,B5a3a2,求2A3B.
22a(2a2); (283)(5xy)3(2x3y);
(284)2a(ab)2(ab); (285)1(3xyx)[2(2x3yz)
(286)3xy2xy3xy2xy; (287)5(ab)4(3a2b)3(2a3b);
(288)3a(5aabb)(7ab7b3a)
(289)(4xx5)(5xx4),其中x2
(290)(xy3223222222222221123y)(xxy1),其中x,y
33223423232323(291)求单式7xy、2xy、3xy、2xy的和。
(292)0.2ab6ab1.4ab4.8abab (293)2222222121212xxx
24648aba2
332(294)2xy2xy4xyxy4xy3xy (295)96ab6a722(296)3a5a26a6a3,其中a21
223223(297)当x4,y2时,求代数式3xy3xyx3xy3xyy的值。 (298)2x3y32xy42x3y (299)4x7x35x3x4
22(300)18m5n20m3n622mn3 (301)2x3y4x3xy
先化简,再求值。
(302)5x3y5x2224y27xy其中x1,y2.
(303)10(x1)5; (304)(305)2(y2)3(4y1)9(1y); (306)7x15x13x2;
23240.89x1.33x5x1.
1.20.20.3(307)17(2-3y)-5(12-y)=8(1-7y); (308)3x-26+6x-9=12x+50-7x-5;
3x-1.50.2x-0.1(309)15-(7-5x)=2x+(5-3x) (310) +8x= +4
0.20.095y4y15y5 (312)4(2y+3)=8(1-y)-5(y-2);
23412x33x43x22x12x1(313) (314)
15152452x110x12x12(x+1)5(x+1)(315)1
=-1 (316)36364(311)(317)x425x (318)12x53x
64(319)(x3)3(25x) (320)4x3(20x)5x7(20x)
(321)已知x=-2是方程2x-∣k-1∣=-6的解,求k的值。
(322)2x1x12y15y7
1 (323)16346(324)如果方程2xax1的解是x4,求3a2的值.
(325)已知等式(a2)xax10是关于x的一元一次方程(即x未知),求这个方程的解.
(326)7x6163x (327)2(3x)4(x5)
2(328)x75x81121 (329)2xx(x1)(x1)
22433(330)已知x2是关于x的方程2(xm)8x4m 的解,求m的值。
(331)当x2时,代数式2x(3c)xc的值是10,求当x3时,这个代数式的值。
(332)(1)当m为什么值时,代数式23m5m8的值比代数式的值大5?
73(333)当x=—3时,代数式(2m)x2m3的值是—7,当x为何值时,这个代数式的值是1?
(334)已知方程3(3x3)12x的解与关于x的方程3xmm27的解相同,求m的值.
4x4x21的解与方程4x(3a1)6x2a1的解相同,求式子a的值 .
8a323xx8(336)(337)3(x1)2(x2)2x3
1
23(335)如果方程(338)x1xx21
36(339)x1x350
0.20.01
(340)已知y16x,y227x,若①y12y2,求x的值;②当x取何值时,y1与y2小3;
(341)已知axa384是关于x的一元一次方程,试求a的值,并解这个方程。
2(342)若x33y40,求xy的值。
(343)若关于x、y的方程6x5y23Rx2Ry4R0合并同类项后不含y项,求R的值。
(344)10(x1)5 (345)(346)2(y2)3(4y1)9(1y) (347)7x15x13x2
23240.89x1.33x5x1
1.20.20.3(348)y=1是方程2(my)2y的解,求关于x的方程m(x4)2(mx3)的解。
(349)方程23(x1)0的解与关于x的方程13kx3k22x的解互为倒数,求k的值。
2(350)
6x74x5 (351)
2(1y)2
y1y23x12x4 (353)
223(x1)
263212x1(354)
设y1x1,y2,当x为何值时,y1与y2相等?
54(352)yy1y2
2252x1.2x0.4x0.90.1x0.50.030.02x(357)
1 (358)0.70.30.50.20.03
1111(359)y3331 (360)24x3563x22x1
22221352x3x2(361)
(3x)3(2x)36. (362)1
524640.1x0.40.2x1(363)
.
11.20.3(355)6(1x)5(x2)2(2x3) (356)y(364)
(365)
(366)
(367)
7x110.2x5x1.
0.0240.0180.0121x107x1x121(x)3(2x).
336231112xx(x1)(x1)
223
3(x3)52(25x); (368)
(369)
(370)
(371)
(372)
(373)
(374)
(375)
(376)
(377)
(378)
(379)
(380)
(381)
(382)
(383)
(384)
(385)
(386)
(387)
(388)
(389)
(390)
(391)
(392)
(393)
(394)
24x3563x22x1;
135(3x)3(2x)36.
5242x3x21;
642x1x35;
43x12x2;
x2332x15x11;
364x323x
x+2.5482x1.2x1;
0.70.30.4x0.90.1x0.50.030.02x;
0.50.20.0311x(0.170.2x)1;
0.70.0310.5x0.2x10.3x;
0.30.30.020.1x0.40.2x1;
11.20.30.1x0.020.1x0.10.3,
0.0020.05x4x21.7;
30%50%1(x4)x335x19,
0.50.1250.2x0.450.0150.01x0.5x2.5
0.250.015111x2{[(4)6]8}1.
9753111233xxxx;
2343241123(2x3)(32x)x.
1119131331333x(x(x)(x).
447167113(x1)(x1)2(x1)(x1);
323(x-1)-2(2x+1)=12 ;
5(x+8)-5=6(2x-7);
113(k1)(k1)2(k1)(k1)
323(y-7)-2[9-4(2-y)]=22;
57x75x;
871yy2;
y332(395)
(396)
(397)
(398)
(400)
6y354y ;
4452x7x2;
xx3436x4x31.3;
0.20.51x2x32x[(1)2]x2; (399)(1)(3)1
23423323x1x3xxxx1; (401)x1
55(402)
2(x+2)=5(x+9)-2(x-2);
(403)
23x35(x1)1 ;
(405)
15%x+10-x=10×32% ;
(407)
12y14y25y;
(409)
|5x+4|+2=8;
24816(404)
2x122x5310x1741
406)
2x15x3161
408)
0.330x3(52x0.36.5)0.05112410)xx12x2233
( ((
更多推荐
方程,计算题,上册,苏州,太仓,中考,解与,求值
发布评论