2023年12月5日发(作者:南充初三3诊数学试卷)

衡水中学2019-2020第一学期九年级教学质量检测数学试卷

(考试时间:100分钟 满分:120分)

一. 选择题(本题共10小题,每小题3分,共30分)

1.

一元二次方程4空+1二4x的根的情况是()

A.没有实数根

C.有两个相等的实数根

A・1

B・2

B.

110°B.只有一个实数根

D.有两个不相等的实数根

C・3

C. 120°

D. 4

D. 130°

2.

在正方形.矩形、菱形、平行四边形中,苴中是中心对称图形的个数为()

3.如图,四边形如?是。0的内接四边形,若ZA=70° A. 100°,则ZQ的度数是()

A

第7题

点川到圆心0的距离防3cm,则点川与圆0的位置关系为()

A・点川在圆内

C.点夹在圆外

2

5.

关于反比例函数『=-一,下列说法正确的是()

x

A.图彖过点(1, 2)

c.当兀>0时,y随x的增大而减小

A.图象开口向上

C.当貳>1时,y随X的增大而减小

A. Zf-4ac >0 B. a ■ \"c>0

D・关于x的方程ay+bx^c=0的根是

-Yi= \" 1» -Y:=5

8•在平而直角坐标系中,将於(-b 5)绕原点逆时针旋转90°得到才,则点才的坐标 是()

A. (-1,5) B・(5, - 1) C・(-1, -5) D・(-5, - 1)

9.

如图,幼儿园计划用30也的伟|栏靠墙恫成一个而积为100怎的矩形小花园(墙长为15B.图象在第一.三象限

D.当兀<0时,y随x的增大而增大

B.点月在圆上

D.无法确定

6.

对于二次函数Y=-A<+2.Y-4,下列说法正确的是()

B.对称轴是卅2

D.图象与X轴有两个交点

7.

已知二次函数产的图像如图所示,那么下列判断不正确的是()

皿),

则与墙垂直的边*为()

A. 10

加或

5

B. 5 /27

8

C. 10 m D. 5

10.

如图.在平而直角坐标系中,点F(l, 4)、Q5刀)在函数y = -U>0)的图象上,当

X

加>1时,过点P分别作x轴、y轴的垂线,垂足为点人B;过点0分别作*轴、y轴的 垂线,垂足为点G D.仞交刃于点伐随着也的增大,四边形批絃的而积()

第1页,共13页

A.增大

B•减小

C.先减小后增大

D.先增大后减小

第1页,共13页

第9题

二・填空题(本题共6小题,毎小题4分,共24分)

11.

已知关于x的方程Y+3x + a二0有一个根为・2,则另一个根为____________ ・

12.

抛物线产一¥+1向右平移2个单位长度,再向下平移3个长度单位得到的抛物线解析式

是 _________ .

13•如图,△磁中,ZZMC33。,将△磁绕点*按顺时针方向旋转50° ,对应得到

C ,则ZF

的度数为 ________ .

14.

如图是一个可以自由转动的转盘,下表是一次活动中的一组统汁数据:

转动转盘的次数”

落在“铅笔”的次数血

100

68

150

111

200

136

500

345

800

546

1000

701

转动转盘一次,落在“铅笔”的概率约是 _________ (结果保留小数点后一位).

15. ___________________________________________________________________________

若圆锥底面圆的周长为8”,侧面展开图的圆心角为90°

,则该圆锥的母线长为 ________________

16•如图,在平而内2条直线相交最多形成1个交点,3条直线相交最多形成3个交点,4

条直线相交最多形成6个交点•现有10条直线相交最多形成 _______ 个交点.

三・解答题(一)(本题共3小题,每小题6分,共18分)

17・解方程:3F-2x-3 = O 18.如图,M是的直径,弦CDLAB于E ZCD^30° , CE2届

求阴影部分的面积

第1页,共13页

1 Q

19.王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y = —x2 + -x,

英中y (m)是球的飞行高度,x (m)是球飞出的水平距离,结果球离球洞的水平距离 还有2m.

(1)

请写岀抛物线的顶点坐标.

(2)

若王强再一次从此处击球,要想让球飞行的最大髙度不变且球刚好进洞,则球飞行、

路线应满足怎样的抛物线,求出英解析式・

21・如图,在Rl \'ABC中,AB=AC. D、厅是斜边 庞上的两点,ZEAD=45\",将△磁绕

点川II页时针旋转90°

,得到△月尬 连接莎

(1)求证:EF=ED

⑵若AB= 2^2 , CD=、求应•的长

22.

小明、小刚和小红各自打算随机选择元旦的上午或下午去红花湖景区游玩.画树状图解 答下列问题:

(1)

小明和小刚都在元旦上午去游玩的概率为:

(2)

求他们三人在同一个半天去游玩的概率.

第1页,共13页

五.解答题(三)(本题共3小题,每小题9分,共27分)

第1页,共13页

23.

如图,直线产-时1与反比例函数产£的图像相交于点乩过点月作ACA.X轴,垂

x

足为点Q(-2, 0).连接川7、BC.

(1)求反比例函数的解析式:

⑵求Ssc

⑶利用函数图象直接写出关于*的不等式-对1〈£的解集.

24.如图,在△磁中,AB=AC, ABAC=W ,以为直径的。

0分别交EG必于点D E,过点万作直线万尸,交EQ的延长线于点只

(1)求证:BE=CE

⑵若AB=6.求的长:

⑶当Z尸的度数是多少时,肿与00相切•证明你的结论.

25•如图.△磁中,ZJC^90c , AOCB^2.以氏为边向外作正方形万动点M从A点

岀发,以每秒1个单位的速度沿着 n的路线向。点匀速运动(\"不与A. q重合); 过点”作直线2丄弘,』与路线 H相交于M设运动时间为上秒.

⑴ 填空:当点\"在川Q上时,BW _________________ (用含r的代数式表示);

(2)

当点M{£ CD.h时(含点C),是否存在点M,使•为等腰三角形?若存在,直接

写出r的值;若不存在,请说明理由:

(3)

过点再作肋■丄和,垂足为尸,矩形他疔V与△迦重叠部分的而积为S,求S的最大

值.

第1页,共13页

衡水中学2019-2020第一学期九年级教学质量检测

数学试题答卷

说明:1・答卷共4页.考试时间为100分钟,满分120分.

2.答卷前必须将自己的姓名、座号等信息按要求填写在密封线左边的空格内

一、选择题(本题共10小题,每小题3分,共30分)

题号

1 2

3 4 5

6

7

8

9

10

答案

二、

填空题(本题共6小题,每小题4分,共24分)

11. ________________ 12. ______________ 13.

14. ________________ 15. ______________ 16.

三、

解答题(一)(本题共3小题,每小题6分,共18分)

17.解:

解:19.解:

第1页,共13页

四、解答题(-)(本题共3小题,每小题7分,共21分)

20.解:

第1页,共13页

五、解答题(三)(本题共3小题,每小题9分,共27分)

23.解:

第1页,共13页

25.

解:

备用图1

第1页,共13页

衡水中学2019-2020第一学期九年级教学质量检测

数学试卷参考答案

一・选择题(每小題3分,共30分)

题号

答案

1

C

2

D

3

B

4

A

5

D

6

C

7

B

8

D

9

C

10

A

二填空题(每小题4分,共24分)

12. y = _(x_2)\'_2:

14. 0.7:

13. 17°:

16.45. 15. 16:

三.

解答题(一)(本题共3小题,每小题6分,共18分)

17.

lr 一

4“ =

(一2)~ — 4x3x(—3) = 40 > 0

_(_2)

土顾

_1±扇

x = -2^3- = -3-

?分

1+A/IO l-Vio

……6分

18•解:VZCDB = 30°,

AZCOB=60°,

又•••弦

CD丄AB, CD=2施,

•••CEW, 9 <

OE=x,则

OC=2x

(V3)2+X2=(2A-)2,得

OC=2 ……4

AOEC^AOED

6QX7T X 22 ^ 2兀

••邙片翱一$扇形COB-

360

一飞—

……6分•

n “

第1页,共13页

19. (1) V y = --x2 + -x = --(x-4)2 + —

5 5 5V 7 5

・••抛物线的顶点坐标(4,罟)

⑵由题意,所求抛物线顶点坐标为(5, —) II经过点(0, 0)

y

=(心一5)~ +£

••• 25^/ + —= 0

5

16

:.a = _——

125

% —5)*

••• y =

125v 7 5

四.解答题(二)(本题共3小题,每小题7分,共21分)

20.解:(1)设第1季度平均每月的增长率为&由题意,得

500(1+ =720

解得召=0.2, x2 = -2.2

(舍去)

答:第1季度平均每月的增长率为20%.

§分

⑵•・•第2季度平均每月的增长率保持与第1季度平均每月的增长率相同

:• x = 0.2

x = 0.2 时,720( 1+x)2 =1036.8

答:该厂今年5月份总产虽:可以突破1000t 7分

21.解:(1) VAADC绕点人顺时针旋转90。,得到ZX/IFB

••• AD=AF9 ZDAF=90°

••• ZME= ZDAF- ZDAE=45Q

:.ZFAE= ZDAE

AE=AE

••• EF=ED

(2)在

MABC

中,AB=AC=2迈

••• BCfABhAC,=4

由旋转性质,得

ZFBA = ZDCA=45°, FB=DC=1 :.ZFBE=90°, ^EF=x

BE=BC-ED—DC=4—x— 1 =3-x

第1页,共13页

根拯勾股左理,得

I2 +(3-x『=x2

解得:X = |

3

22•解:(1)根据题意,画树状图如图,

小明

小刚

小红

由树状图可知,三人随机选择元旦上午或下午去游玩共有8种等可能结果。中小明和小刚都在元旦上午去游玩的结果有:

(上,上,上)、(上,上,下)共2种,

2 1

•••P

(小明和小刚都在兀旦上午去游玩)=8 = 4……5分

(只取小明,小刚两层分析也可以)

⑵由⑴中树状图可知,他们三人在同一个半天去游玩的结果有:

(上,上,上)、(下,下,下)共2种,

2 1

•••P

(三人在同一个半天去游玩)=8=4

答:他们三人在同-个半天去游玩的概率是土.….

五.解答题(三)(本题共3小题,每小题9分,共27分)

23.解:(1) V AC丄x轴,垂足为点C(—2, 0)

.•.点A、C横坐标相同

当—2时,尸一兀+1=3

•••点A坐标为(—2, 3) ••• 7—2X3=—6

•••反比例函数的解析式为尸-9 x

_ 6

⑵由“二

x = 3

丿=

_x + l

y =

2

••• B(3, —2)

过点B作BD丄AC,垂足为点D,则D(—2, —2)

第1页,共13页

••• AC=3, BD二3-(-2)二5

•••

SAA5C

=

-

AC

BD

= 1x3x5 = —

(3)不等式一x+1 <£白勺解集为一23

7 zy

g伉

24.解:

(1)证明:连接AE,

TAB是00直径,

••• ZA£B=90°,

,

9:AB=AC.

;・

BE=CE・

⑵解:连接OD. 0E

•:OA=OB、

BE=CE

:.OE//AC

2分

:.ZBAC=ZODA =ZOAD =54。,

TAB%

•*. OA =0A=3,

9龙

To

⑶当ZF=36°时,BF与0O相切

证明:V ZBAC=54°, ZF= 36%

A ZABF= 180°- (ZBAC+ZF)

7分

= 180°- (54°+36°) =90°

:・BF是OO切线.

25•解:(l)2>/2 — y/2t ..... ]分

(2)如答题图1,当7 = 2时,点再与点万重合,有NBDE、△QEV为等腰三角形:

旺2、则MD二JT,即/=4■血时,有⑰初氏为等腰三角形:

当/=3时,点N为BD中点,有川片切,△眩丫为等腰三角形.

第1页,共13页 ⑶①如题图,当M在AC±.即0VtV2时,

VAJ5C中,ZAC庆90° , AOBC

.ZA=ZA^C=45°

在正方形万&近中,ZDBC= 45°

:.ZABD 二90 °

・•.△/!©•, 为等腰直角三角形.

S = S、BD 一S一S/G = —x4x2 ——x AM xMN ——xBNxBG

3( 4丫

8

+5 ……6分

②如答题图2,当、I在CD上时,即2GV4时,易知彳摭为等腰直角三角形

JlD=4-t, S=*(4_f)2

4 8

在052范围内,当『肓时,s取最大值,最大值为亍

在29<4范围内,当/ =

2时,S取最大值,最大值为2.

4 8

……9分 综上,当/ =工时,S的最大值为一・

第1页.共13页


更多推荐

抛物线,矩形,旋转,函数,游玩,小题,结果