2024年4月14日发(作者:合肥五十中初三数学试卷)

——代数式的求值

类型一、利用分类讨论方法

【例1】 已知

x

=7,

y

=12,求代数式

x

+

y

的值.

变式练习:

1、已知|x-1|=2,|y|=3,且x与y互为相反数,求

x

2

xy4y

的值

2、|x|=4,|y|=6,求代数式|x+y|的值3、已知

x1,y1

,求代数式

x

2

2xyy

2

值;

类型二、利用数形结合的思想方法

【例】有理数

a

b

c

在数轴上的位置如图所示:试试代数式

a

+

b

│-│

b

-1│-│

a

c

│-│1-

c

│的值.

1

3

变式练习:

1、有理数a,b,c在数轴上对应点如图所示,化简|b+a|+|a+c|+|c-b|

C B 0 A

2、已知a,b,c在数轴上的位置如图所示,化简|a|+|c-b|+|a-c|+|b-a|

a 0 c b

题型三、利用非负数的性质

【例1】已知(

a

-3)

2

+│-

b

+5│+│

c

-2│=0.计算2

a

+

b

+

c

的值.

【例2】若实数a、b满足a

2

b

2

+a

2

+b

2

-4ab+1=0,求

变式练习:

ba

之值。

ab

1、已知:│3x-5│+│2y+8│=0求x+y

2、若205×│2x-7│与30×│2y-8│互为相反数,求xy+x

精心整理

精心整理

题型四、利用新定义

【例1】 用“★”定义新运算:对于任意实数

a

b

,都有

a

b

b

2

+1.例如,7★4=4

2

+1=17,

那么5★3=___;当

m

为实数时,

m

★(

m

★2)=___.

变式练习:

1、定义新运算为a△b=(a+1)÷b,求的值。6△(3△4)

2、假定m◇n表示m的3倍减去n的2倍,即 m◇n=3m-2n。

(2)已知x◇(4◇1)=7,求x的值。

3、规定

ab1,ab1

,则

(68)(86)

的值为;

题型五、巧用变形降次

【例】已知

x

2

x

-1=0,试求代数式-

x

3

+2

x

+2008的值.

变式练习:

a

b

b

a

m

2

m10

,则

m

3

2m

2

1997______

题型六、整体代入法

当单个字母的取值未知的情况下,可借助“整体代入”求代数式的值。

【例1】(1)已知

3x

2

2y57,求9x

2

6y3

的值.

(2)已知

m2n3(m2n)m2n5(2mn)

3,求

的值.

2mn2mn3(2mn)m2n

abc

的值.



aba1bcb1acc1

bcacab

【例3】已知a+b+c=0,求代数式

3

的值.

abc

【例2】当abc=1时,求

变式练习:

11a2abb

1、已知

4

,则的值等于().

ab2a2b7ab

22

A.6B.-6C.D.

157

123321111

2、若

5,7

,则



.

xyzxyzxyz

3、已知

2(ab)ab

ab

113x2xy3y

的值;4、已知

2

,求代数式的值;

7

,求

xy5x3xy5y

ab3(ab)

ab

精心整理

11

ba

(ac)(bd)

6、已知

ab2,bc3,cd5

,则的值为;

ad

5、若

abc0

,则

a()b()c()

的值为;

1

b

1

c

1

a

1

c

题型七、参数代入

abca5bc

求的值.

,

2342a3bc

2

1

1

【例2】、若

2

的值为,则

2

的值为().

2y3y7

4y6y1

4

11

A.1 B.-1 C.- D.

75

x

2

1

11x

【例3】、已知

2

,求

()(

2

x)

的值。

x2

132

1x1x

x1

【例1】、已知

变式练习:

xyz4x3y

的值;



,且

3x2yz22t

,求

2tt3t2z5t

xyz

2、若



,且

3x2yz18

,求

z5y3z

的值;

345

1、若

3、如果

xy2z

,且

xy

,则

A

4

B

2

C0D2

题型八、主元代换法

xy



()

xyyz

【例1】已知a=2b,c=3a,求a

2

+32b

2

-c

2

+3的值。

2a

2

3b

2

c

2

【例2】:已知

a2b3c0

a3b5c0

,则

2

的值______.

a2b

2

2c

2

变式练习:

1、已知

y2x,z2y,x2

,则代数式

xyz

的值为;

2、已知

ab1,ca2

,则

(ab)

3

(cb)

3

(ca)________

3、已知

a2000x1999,b2000x2000,c2000x2001

,那么

(ab)

2

(bc)

2

(ca)

2

的值等于()

A4B6C8D10

精心整理

精心整理

5、已知

(

1

8

111196yz4xz3xy

)

,求

428()

的值;

22x3y4z812xyz

题型九、特殊值法

【例1】、已知-1<

b

<0,0<

a

<1,那么在代数式

a-b

a+b

a+b

2

a

2

+b中,对任意的

a

b

,对应

的代数式的值最大的是()

(A)

a+b

(B)

a-b

(C)

a+b

2

(D)

a

2

+

b

【例2】若

2x

3

a

0

a

1

xa

2

x

2

a

3

x

3

,则

a

0

a

2

a

1

a

3

的值为_______.

22

【例3】、设

(1

x

)

2

(1

x

)

abxcx

2

dx

3

,

abcd

变式练习:

1、若已知

(x3)

5

a

1

x

5

a

2

x

4

a

3

x

3

a

4

x

2

a

5

xa

6

,则

a

1

a

2

a

3

a

4

a

5

a

6

_______

a

1

a

2

a

3

a

4

a

5

________

2、已知

1

2

2

2

3

2

n

2

n(n1)(2n1)

,那么

2

2

4

2

6

2

50

2

题型十、常值代换法

常值代换法是指将待求的代数式中的常数用已知条件中的代数式来代换,然后通过计算或化

简,求得代数式的值.

11

【例1】已知ab=1,求

的值

1a

2

1b

2

1

6

变式练习:

1、若

ab1

,求

ab

的值;2、

已知

ab

2

6

,求

ab(ab

3

a

2

b

5

b)

的值;

a1b1

课后作业:

A卷(共100分)

一、选择题(每小题3分,共30分)

1.在

5

,0,

2

,4这四个数中,最大的数是( )

A.4 B.

5

C.0 D.

2

2.2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着

中国高铁车从“中国制造”到“中国创造”的飞跃,将数300000用科学记数法表示

精心整理

为( )

A.

310

6

B.

0.310

6

C.

310

5

D.

3010

4

3.用一个平面去截一个正方体,截面的形状不可能

为( )

...

A.三角形 B.五边形 C.六边形 D.七边形

4.下列各组式子,不是

同类项的是( )

..

A.

2

2

3

3

B.

3c

2

b

5b

2

c

C.

xy

4xy

D.

4m

2

n

2nm

2

5.已知

a

b

所表示的数如图所示,下列结论正确的

( )

A.

a0

B.

b>0

C.

ba

D.a-b<0

1

2

6.用代数式表示“

a

的3倍与

b

的差的平方”,正确的是()

A.

(3ab)

2

B.

3(ab)

2

C.

3ab

2

D.

(a3b)

2

7.如图所示的是()的表面展开图

A.三棱锥 B.三棱柱C.四棱柱D.四棱锥

8.某种品牌彩电原价

a

元,降价20%后,则该品牌彩电每台售价为( )

A.

a

0.8

B.

0.8a

元 C.

0.2a

元 D.

a

0.2

9.下列运算正确的是()

A.

a

3

a

3

B.

a

2

a

2

C.

a

2

a

2

D.

a

3

a

3

10.观察下图中正方形四个顶点所标的数字规律,可知数2015应标在( )

715

6

231014

11

第1个正方形第2个正方形第3个正方形第4个正方形

A.第502个正方形的左下角

1

4

5

89

B.第503个正方形的右上角

D.第504个正方形的右上角

12

13

16

C.第504个正方形的左上角

二、填空题(每空2分,共20分)

精心整理

精心整理

11.3的相反数是,

3

的绝对值是.

12.如果全班某次数学成绩的平均分是84分,某同学得了85分,记作+1分,那么

5

分表示的是分.

5

ab

3

13.单项式

的系数是,次数是.

3

1

4

14.若

(a2)

2

b10

,则

(ab)

2015

的值是.

15.关于

x

y的多项式

2x

2

y

3

2x

2

y3y2

是次四项式.

16.一个棱柱有16个顶点,所有侧棱长的和是32cm,则每条侧棱的长为cm.

17.若

a

b

互为相反数,

c

d

互为倒数,则

ab

cd

=.

2015

18.规定“※”是一种新运算,且a※b=a

2

-b+1.例如2※3=2

2

-3+1=2,请根据上面的

新运算计算3※4=.

三、综合解答题(共50分)

19.计算下列各题(每小题4分,共24分)

(1)

(15)2025

(2)

164

;(3)

()

5(6)(4)

2

(8)

2015

2

(6)

1

2

[2(3)

3

(5)

12.75

(24)(1)

3

1

2

1

3

5

6

3

7

1

42

(4)

1

3

1

8

1

6

1

3

5

0.5

2

]

4

20.化简(每小题5分,共10分)

(1)

m42m5

(2)2a+3b+6a+9b-8a+12b.

21.(6分)如图为7个大小一样的小正方体组成的几何体,请画出此几何体的三视

图.

22.(10分)某办公用品销售商店推出两种优惠方法:①每购买2个书包,赠送1支

水性笔;②购书包和水性笔一律9折优惠.书包每个定价40元,水性笔每支10元.小

颖和同学需购买8个书包,水性笔若干支(不少于4支).

(1)用优惠方法①购买水性笔

x

支,总费用为

y

1

元,用含

x

的代数式表示

y

1

;用优惠

精心整理

方法②购买水性笔

x

支,总费用为

y

2

元,用含

x

的代数式表示

y

2

(2)小颖和同学需购买这种书包8个和水性笔16支,请分别计算

y

1

y

2

的值.请设

计出费用最少的方案,求出最少费用.

B卷(共50分)

一、填空题(每小题4分,共20分)

23.已知

m

2

mn5

mnn

2

3

m

2

2mnn

2

的值是.

-7

24.若

a2,b

2

25,ab0

,则

ab

的值是.

25.一个正方体的表面展开如图所示,每一个面上都写一个整数,并且相

对两个面上所写的两个整数之和都相等,那么

abc

=.

26.已知有理数

a

b

c

在数轴上的对应点如图所示,

ba0c

b

5

20

a

c

化简

bcabaac

_________.

27.一个几何体由若干个大小相同,棱长均为2的小立方块搭成,如图分别是从它的

正面和上面看到的形状图,则该几何体最少与最多时体积之和是.

二、解答题(共30分)

28.(本小题满分6分)化简求值:

2ab[2a

2

3(aba

2

)ab]b

,其中

a1

b2014

.

29.(本小题满分8分)已知当

x2,y4

时,代数式

ax

3

by

的值为2016.

求当

x4,y

时,代数式

3

ax

24

by

3

2015

的值.

30.(本小题满分8分)观察下列式子:

1

111

1







22232334344545

1

2

1

2

(1)用含

n

(其中

n

为正整数)的代数式表达上式规律为:

(2)利用规律计算:

1

n(n1)

1111



10010110110210210320152016

(3)利用规律先化简再求值:

1111

112015



,其中

2

x(x1)(x1)(x2)(x2)(x3)(x2014)(x2015)

xx2015

x2015x

且满足

3

x

2

6045

x

3

0

精心整理

精心整理

(4)探究并计算:

1111



5101015152020102015

31.(本小题满分8分)

学校去超市采购大米,他看中了

A

B

两家超市的大米,这两家超市大米的品质

一样,零售价都为6元/千克,批发价各不相同.

A

家规定:批发数量不超过1000

千克,按零售价的92%优惠;批发数量超过1000千克但不超过2000千克,按零

售价的90%优惠;批发数量超过2000千克,按零售价的88%优惠.

B

家的规定如下表:

数量范围(千克) 0~500(含500) 500以上~1500

(含1500)

价格(元) 零售价的95% 零售价的85%

1500以上~

2500(含2500)

零售价的75% 零售价的70%

2500以上

表格说明:

B

家批发价格分段计算,如:学校批发大米2100千克,则总费用

=

695%500685%1000675%(21001500)

=10650(元).

(1)如果他批发600千克大米,则他在

A

家批发需要元,在

B

家批发需

要元;

(2)如果他批发

x

千克大米(

1500x2000

),求他分别在

A

B

两家批发需要的

总费用(用含

x

的代数式表示);

(3)现在他要批发1800千克大米,你能帮助他选择在哪家批发更优惠吗?请

说明理由.


更多推荐

代数式,利用,优惠,批发,题型,方法,规律,计算